Inverse Compton Source (ICS) for LUXE

Rajendra, Kristjan, Simon and Jenny

Outline:

- Brief introduction and motivation
- Methods for HHG
- Intended setup in 28 m
- Prelim simulations
- Summary

Two experimental configurations at LUXE

Replace this target with ICS source

ICS setup envisaged for LUXE

Advantages:

- Well defined in-state of the collision between electron and photon beams \rightarrow increases the precision of SFQED measurements
- Narrow energy spectra help determining n-photons channel in nonlinear Breit-Wheeler (NBW) dependence on energy similar to Compton edge shift by tuning ICS source energy

Interaction of electron beam with the harmonics of w at the IP

- Different harmonics produce different pair rates
ig. 19 Approximate yield of pairs for different harmonics of the IP laser, assuming the simulation result of ~ 8 pairs produced by a $\xi=6.5$ laser pulse in phase 1 and a scaling of the yield given by the LCFA for a 16.5 GeV photon. The data points on each curve are for equivalent values. (Assumed transmission of laser intensity: 0.2 into $2 \omega_{L}$ and 0.1 into $3 \omega_{L}$)
- Polarisation dependence of NBW as ICS will be highly polarised source (in case of linear polarisation of laser beam)
- Highly polarised photon source might be also useful for ALPS

Required 3w beam parameters of ICS:

- $\mathrm{a} 0=0.2$, in 25 fs , waist $=5 \mathrm{mu}$ needs $\mathrm{E} _3 \mathrm{w}=5 \mathrm{~mJ}$
- a0=0.1, in 100fs, waist=10mu needs E_3w=16mJ
- Electron beam at ICS is more likely $\sim 10 \mathrm{mu}$
- Beam diameter in the laser room about $2.5-5 \mathrm{~cm}$?
- Conversion in laser room and transport with 3w optics to ICS chamber
- Focusing by an OAP with a hole in the center
- Big question is how much energy in w we need to get the required energy
- Assuming 10% conversion efficiency we need to start with $50-150 \mathrm{~mJ}$ in w
- Main aim is to test what is the best efficiency we could achieve!!

What are the methods?

High harmonics by nonlinear optical processes

$$
\begin{aligned}
\tilde{P}(t) & =\epsilon_{0}\left[\chi^{(1)} \tilde{E}(t)+\chi^{(2)} \tilde{E}^{2}(t)+\chi^{(3)} \tilde{E}^{3}(t)+\cdots\right] \\
& \equiv \tilde{P}^{(1)}(t)+\tilde{P}^{(2)}(t)+\tilde{P}^{(3)}(t)+\cdots .
\end{aligned}
$$

Second Harmonic generation (SHG)

Figures from R Boyd book
(a)

(b)

- ICS source for LUXE
- Polarised e-beam for LEAP- a remarkable leap in laserdriven polarised source

Test in 28m lab

Space for HHG

For both $3 w / 4 w$ we need to prepare the input beam (w)

Simulations using Chi2d from Tino Lang

Input parameters:

Bierfringence crystal properties:

- Crystal: BBO
- Size: $10 \times 10 x$ [?] mm
- Type: I, e \leftarrow oo
- Phase matching angle: SHG-29.2, THG- 44.3
- Damage threshold for TEM00 1064nm:>0.5GW/cm2 at 10ns $\sim 50 \mathrm{GW} / \mathrm{cm} 2$ at 1 ps

Laser Beam parameter- SHG:

- Energy: 5mJ
- Pulse length:25fs, Gauss
- Beam radius (1/e2): 5mm
- Beam spatial profile: Gauss/Supergauss

Crystal thickness optimisation for SHG case:

- Optimising thickness by keeping an eye on damage threshold~100GW/cm2

- Longer the pulse, narrow is the bandwidth- higher is the efficiency

THG case:
$1.5 \mathrm{~mJ}, 800 \mathrm{~nm}, 30 f \mathrm{fs}$ _500gdd;1.2mJ,400nm,30fs_0gdd,5mmradius_supergauss

ICS case study

SHG: $20 \mathrm{~mJ}(\mathrm{w}), 25 \mathrm{~mm}$ size beam

SHG: 50mJ(w), 40mm size beam

ICS case study

THG: $40+20 \mathrm{~mJ}(\mathrm{w}+2 \mathrm{w}), 40 \mathrm{~mm}$ size beam

- Energy in $3 w$ is roughly 12 mJ
- Focus quality is also need to be checked!

Summary:

- A preliminary study of 3w generation relevant for ICS for LUXE
- Possible to get required parameters of ICS by suitable combination of energy, beam size and crystal thickness
- Common setup serves also purpose of 4 w generation

$$
\Delta k=k_{1}+k_{2}-k_{3}
$$

$$
\begin{gathered}
I_{3}=I_{3}^{(\max)}\left[\frac{\sin (\Delta k L / 2)}{(\Delta k L / 2)}\right]^{2} . \\
\frac{n_{1} \omega_{1}}{c}+\frac{n_{2} \omega_{2}}{c}=\frac{n_{3} \omega_{3}}{c}
\end{gathered}
$$

frequency, ω
Figure 2.3.2 Dispersion of the refractive indices of a negative uniaxial crystal. For the opposite case of a positive uniaxial crystal, the extraordinary index n_{e} is greater than the ordinary index n_{0}.
2.3. Phase Matching

83

Figure 2.3.3 Geometry of angle-tuned phase matching of second-harmonic generation for the case of a negative uniaxial crystal.

$$
\frac{1}{n_{\mathrm{e}}(\theta)^{2}}=\frac{\sin ^{2} \theta}{\bar{n}_{\mathrm{e}}^{2}}+\frac{\cos ^{2} \theta}{n_{\mathrm{o}}^{2}}
$$

