Glueball Molecules

Table of Contents:

- Introduction
- Glueballs and ordinary mesons
- Molecular states of glueballs
- Phenomenology of glueball molecules
- Things to take home

Alexey A. Petrov Wayne State University

Quantum Chromodynamics is simple!

 $\int = \frac{1}{4g^2} G_{\mu\nu} G_{\mu\nu} + \sum_{j} \overline{g}_j (i \partial^{\mu} D_{\mu} + m_j) q_j$ where $G_{\mu\nu} \equiv \partial_{\mu} F_{\nu}^{q} - \partial_{\nu} F_{\mu}^{q} + i f_{be}^{q} F_{\mu}^{b} F_{\nu}^{c}$ and Du= du + it An That's it !

F. Wilczek, "QCD made simple", Physics Today, August 2000

Introduction

Alexey A Petrov (WSU & TUM)

DESY Seminar, 25 April 2022

- Lingo: what do we mean by "exotic" (quark model-driven)?
 - exotic states:
 - quantum numbers are not allowed in $q\bar{q}'$ or qq'q''
 - states require more than 2 or 3 quarks
 - cryptoexotic states:
 - mass/width do not fit in meson or baryon spectra
 - production or decay properties incompatible with ordinary states

We often do not follow our own definitions. This talk included.

Alexey A Petrov (WSU & TUM)

Ok, maybe Quantum Chromodynamics is not so simple...

- QCD Lagrangian is written in terms of the ``wrong" degrees of freedom: we see mesons and baryons, not quarks/gluons!
- Since gluons carry color charge, they can selfinteract

Can there be bound states of pure glue?

Curious: Higgs field has nothing to do with mass!

2. Glueball spectrum

- Can we predict glueball spectrum?
 - quark models: quark-antiquark potential
 - not so easy for gluons: gauge invariance

- quark models (constituent, flux tube, bag, etc.)

Cornwall and Soni, PLB120 (1983) 431 Hou and Wong, PRD67, 034003 (2003)

- since gluons have spin-one, all glueballs are bosons
- Lattice QCD, QCD Sum Rules, bag models, ADS/QCD, ...

Glueball spectrum: masses

Morningstar and Peardon, PRD60, 034509 (1999)

Hou and Wong, PRD67, 034003 (2003)

Alexey A Petrov (WSU & TUM)

• The predictions for the glueball masses "stabilized"...

Glueball	Ref. [795]	Ref. [796]	Ref. [797]	Ref. [798]	Ref. [799]	QSR [807]		
$ { m GG};0^{++} angle$	$1730\pm50\pm80$	$1710\pm50\pm80$	$1475\pm30\pm65$	1795 ± 60	1653 ± 26	1780^{+140}_{-170}		
$ \mathrm{GG};2^{++} angle$	$2400\pm25\pm120$	$2390\pm30\pm120$	$2150\pm30\pm100$	2620 ± 50	2376 ± 32	1860^{+140}_{-170}		
$ { m GG};0^{-+} angle$	$2590\pm40\pm130$	$2560\pm35\pm120$	$2250\pm60\pm100$	-	2561 ± 40	2170^{+110}_{-110}		
$ \mathrm{GG};2^{-+} angle$	$3100\pm30\pm150$	$3040\pm40\pm150$	$2780\pm50\pm130$	3460 ± 320	3070 ± 60	2240^{+110}_{-110}		
$ { m GGG};0^{++} angle$	$2670\pm180\pm130$	_	$2755\pm70\pm120$	3760 ± 240	2842 ± 40	4460^{+170}_{-190}		
$ { m GGG};2^{++} angle$	-	-	$2880\pm100\pm130$	-	3300 ± 50	$4180\substack{+190 \\ -420}$		
$ { m GGG};0^{-+} angle$	$3640\pm60\pm180$	-	$3370 \pm 150 \pm 150$	4490 ± 590	3540 ± 80	4130^{+180}_{-360}		
$ { m GGG};2^{-+} angle$	-	-	$3480\pm140\pm160$	-	3970 ± 70	4290^{+200}_{-220}		
$ { m GGG};1^{+-} angle$	$2940\pm 30\pm 140$	$2980\pm 30\pm 140$	$2670\pm65\pm120$	3270 ± 340	2944 ± 42	4010^{+260}_{-950}		
$ { m GGG};2^{+-} angle$	$4140\pm50\pm200$	$4230\pm50\pm200$	-	_	4240 ± 80	4420^{+240}_{-290}		
$ { m GGG};3^{+-} angle$	$3550\pm40\pm170$	$3600\pm40\pm170$	$3270\pm90\pm150$	3850 ± 350	3530 ± 80	4300^{+230}_{-260}		
$ { m GGG};1^{} angle$	$3850\pm50\pm190$	$3830\pm40\pm190$	$3240\pm330\pm150$	-	4030 ± 70	$4910\substack{+200 \\ -180}$		
$ { m GGG};2^{} angle$	$3930\pm40\pm190$	$4010\pm45\pm200$	$3660 \pm 130 \pm 170$	4590 ± 740	3920 ± 90	$4250\substack{+220 \\ -330}$		
$ { m GGG};3^{} angle$	$4130\pm90\pm200$	$4200\pm45\pm200$	$4330\pm260\pm200$	-	-	5590^{+330}_{-220}		

H.-X. Chen1, W. Chen, X. Liu, Y.-R. Liu, S.-L. Zhu arXiv:2204.02649 [hep-ph]

Glueball spectrum: 0^{++} masses

• ... but the accuracy seem not to improve much over time

What do we know about glueballs' widths?

Alexey A Petrov (WSU & TUM)

DESY Seminar, 25 April 2022

- Should we expect wide or narrow glueball states?
 - difficult to say model-independently; lots of model-dependent results
 - large N_c counting rules can provide guidance ('t Hooft limit)

Each coupling:

 $g \sim \frac{1}{\sqrt{N_c}}$

Each quark loop:

 N_c

meson and glueball decay amplitudes

• Glueballs are narrow in the large N_c limit, expect smaller widths

- It appears that 0⁺⁺ glueball is the lightest glueball state
 - it must be produced copiously in the glue-rich environment and couples strongly to the color-singlet di-gluon (radiative J/ψ decays)
 - its production in gamma-gamma collisions must be suppressed
 - the decay/production amplitude for the glueballs is flavor symmetric

- it must be narrow (at least in the large N_c limit; also chiral)
 Chanowitz, PRL95, 172001 (2005)
- All of this is generally true for other glueball states as well

"Experimental" searches for glueballs

automatic sweet dumpling machine/rice glue balls making machine

\$852.00-\$2,738.00/ Set

1 Set (Min. Order)

Experimental searches for glueballs

• Searches at dedicated and general-purpose detectors

• No convincing observation of a pure glueball state yet. Why?

- Glueballs and some $q\bar{q}$ states have the same quantum numbers
 - quantum mechanics requires mixing of those states

... which means that "pure glueballs" do not exist!

let us still concentrate on scalar 0⁺⁺ states

 $f_0(500), f_0(980), f_0(1370), f_0(1500), f_0(1710)$

- these states are admixtures $|f_{0i}\rangle = \alpha_i |N\rangle + \beta_i |S\rangle + \gamma_i |G\rangle$ $N \equiv n\bar{n} = (u\bar{u} + d\bar{d})/\sqrt{2}$ $S \equiv s\bar{s}$

- fit to experiment (decays $f_0 \rightarrow \pi \pi, KK, \dots J/\psi \rightarrow \gamma f_0, \dots$)
- various fits exist for the relative coefficients, here is an example

$\langle f_0(1370)\rangle \rangle$		0.819(89)	0.290(91)	-0.495(118)	1	$\langle N\rangle \rangle$
$ f_{0}(1500)\rangle$	=	-0.399(113)	0.908(37)	$\begin{array}{c} -0.495(118) \\ -0.128(52) \\ 0.859(54) \end{array} \right)$		$ S\rangle$
$\left f_0(1710) \right\rangle $		0.413(87)	0.302(52)	0.859(54)		$\langle G\rangle /$

Cheng, Chua, and Liu, PRD92, 094006 (2015)

- Are there any other mechanisms for "glueball hadronization"?
 - meson-meson and meson-baryon molecular states:
 - why not glueball-meson or glueball-baryon molecular states?
 - glueballs have smaller widths than mesons in the large N_c , which might have implications for some observed highly excited states
 - some hints from Nature from observations of a few unusual states?
 - for small binding energy: $m_{G(0^{++})} + m_{\pi} pprox m_{\pi(1800)}$
 - $m_{G(1^{--})} + m_{\pi} \approx m_{X(3872)}$
 - need non-relativistic description of components to build molecular states (consider lightest glueball and lightest octet of pseudoscalars)

Molecular states with glueballs

- Lifetime of the state is expected to be governed by a lifetime of the glueball component
 - smaller widths, at least from the large N_c arguments
 - possible large mixing with highly excited $q\bar{q}$ states
 - expect unusually long-lived "highly excited states"
- Alternatively can be viewed as a "glueball excitation of a state"
- The lightest state (πG): 0⁻⁺ or a "pseudo-glueball" P

- For a weakly-bound system need non-relativistic pions
 - not an unusual situation for pionic atoms!

Kong and Ravndal, PRD61, 077506 (2000)

- kinetic part
$$\mathcal{L}_0(\pi_i) = \pi_i^* \left(i \frac{\partial}{\partial t} + \frac{1}{2m_i} \nabla^2 \right) \pi_i$$

- interaction part
$$\mathcal{L}_{int}(\boldsymbol{\pi}) = \frac{1}{4} A_0(\pi_0^* \pi_0^* \pi_0 \pi_0) + B_0(\pi_+^* \pi_-^* \pi_+ \pi_-) + \frac{1}{2} C_0(\pi_+^* \pi_-^* \pi_0 \pi_0 + \pi_0^* \pi_0^* \pi_+ \pi_-)$$

$$+rac{1}{4}D_0(\pi_+^*\pi_+^*\pi_+\pi_+\pi_++\pi_-^*\pi_-^*\pi_-\pi_-\pi_-$$

$$+2\pi_{+}^{*}\pi_{0}^{*}\pi_{+}\pi_{0}+2\pi_{-}^{*}\pi_{0}^{*}\pi_{-}\pi_{0})$$

- NR pion propagator

$$G(E,\mathbf{k}) = \frac{1}{E - \mathbf{k}^2 / 2m_\pi + i\epsilon}$$

Alexey A Petrov (WSU & TUM)

• It is sufficient to have an effective description of a O++ glueball

- consider massless QCD
$$\mathcal{L}_{QCD} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu,a} + i\overline{q}\,D\!\!/q$$

- use the fact that QCD is classically invariant under dilatations

$$x^{\mu} \to \lambda x^{\mu}$$
, $\psi_q(x) \to \lambda^{3/2} \psi_q(\lambda x)$, $A^a_{\mu}(x) \to \lambda A^a_{\mu}(\lambda x)$

- this symmetry is broken at quantum level

$$(T_{\rm YM})^{\mu}_{\mu} = \frac{\beta(g)}{4g} G^{a}_{\mu\nu} G^{a,\mu\nu} \neq 0,$$

- can introduce a scalar dilaton field G describing the trace anomaly

$$\mathcal{L}_{ ext{dilaton}} = rac{1}{2} \left(\partial_{\mu} \tilde{G}
ight)^2 - rac{1}{4} rac{m_G^2}{\Lambda^2} \left[ilde{G}^4 \log \left| rac{ ilde{G}}{\Lambda}
ight| - rac{1}{4} ilde{G}^4
ight]$$

Salomone, Schechter, Tudron Migdal and Shifman

Alexey A Petrov (WSU & TUM)

DESY Seminar, 25 April 2022

Glueball molecules

- To calculate the binding energy need to couple pions and glueballs
 - use extended linear sigma model $\mathcal{L} = \mathcal{L}_{\rm LSM} + \mathcal{L}_{\rm dilaton} + \mathcal{L}_{\rm int}$

Jankowski et al, PRD84, 054007 (2011)

$$\begin{split} \mathcal{L}_{\text{LSM}} &= \text{Tr}\left[\left(\partial^{\mu} \Phi \right)^{\dagger} \left(\partial_{\mu} \Phi \right) \right] - \lambda_{1} \left(\text{Tr}\left[\Phi^{\dagger} \Phi \right] \right)^{2} \\ &- \lambda_{2} \text{ Tr}\left[\left(\Phi^{\dagger} \Phi \right)^{2} \right] + \text{Tr}\left[H \left(\Phi^{\dagger} + \Phi \right) \right] \\ &+ c \left(\det(\Phi^{\dagger}) + \det(\Phi) \right), \\ &\text{ with } \quad \Phi = \frac{1}{2} \left(\sigma + i\eta_{N} \right) \sigma^{0} + \frac{1}{2} \left(\vec{a}_{0} + i\vec{\pi} \right) \cdot \vec{\sigma} \end{split}$$

… with the interaction term

$${\cal L}_{
m int} = -m_0^2 \; {
m Tr} \left[\left({{ ilde G} \over \Lambda}
ight)^2 \Phi^\dagger \Phi
ight]$$

• Small momentum transfer: match to determine πG coupling

- Matching to NR EFT for pions and glueballs
 - expand G and σ about the minimum (G $\rightarrow \Lambda$ + G, $\sigma \rightarrow \sigma + \langle \sigma \rangle$)...

– ... resulting in

$$\mathcal{L}_{\pi \mathrm{G}} = -\lambda \pi^2 G^2$$
 with $\lambda = \frac{m_0^2}{2\Lambda^2} \left[1 - \frac{\langle \sigma \rangle^2}{m_\sigma^2} \left(2\lambda_1 + \lambda_2 \right) \right]$

• Now we can calculate the low energy π -G scattering amplitude

Glueball molecules: binding energy

- Calculate binding energy from the pole of transition amplitude
 - in quantum mechanics

$$T_{\pi G} = \frac{4\pi}{\mu_{\pi G}} \frac{1}{p \cot \delta_s - ip} = -\frac{4\pi}{\mu_{\pi G}} \frac{a}{1 + ipa}$$

 QFT: solve Lippmann-Schwinger equation to find the transition amplitude

$$G = G = G + \pi \pi \pi$$

$$iT_{\pi G} = -i\lambda + \int \frac{d^4q}{(2\pi)^4} \left(iT_{\pi G}\right) G_{\pi G}\left(-i\lambda\right)$$

• Need to evaluate one loop integral: divergence?

Glueball molecules: binding energy

- Calculate binding energy from the pole of transition amplitude
 - resuming the "bubbles"...

$$T_{\pi G} = \frac{\lambda}{1 + i\lambda \widetilde{A}}$$

- ...need to calculate (expect a divergence, move to d-1 dim), $\lambda \rightarrow \lambda_R$

$$\widetilde{A} = -\frac{i}{2} \frac{\mu_{\pi G}}{m_G m_{\pi}} \int \frac{d^3 q}{(2\pi)^3} \frac{1}{\vec{q}^2 - 2\mu_{\pi G} E - i\epsilon}$$

- We find a scattering amplitude with a pole corresponding to

$$E_{\text{bound}} = E_{pole} = \frac{32\pi^2}{\lambda_R^2} \frac{m_\pi^2 m_G^2}{\mu_{\pi G}^3}$$

– NR bound state: small binding energy. Observed state of $\pi(1800)$?

S. Weinberg

The $\pi(1800)$ puzzle?

- It appears that most issues with understanding of π (1800) would go away if a dominant part of the π (1800) wave function is built up from a glueball- π molecule
 - lifetime of a glueball-pi molecule is driven by a glueball lifetime

– expect smaller width than usual $q\bar{q}$ excitations

- π (1800) mass is tantalizingly close to that of a G(0⁺⁺)- π molecule
 - for small binding energy, as considered before,

 $m_{G(0^{++})} + m_{\pi} \approx m_{\pi(1800)}$

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck. Wikipedia's definitions of a "Duck test"

4. Phenomenology of glueball molecules

- Phenomenology of glueball molecules: a word of caution
 - note: quantum mechanics requires that the states of different nature but the same quantum numbers mix
 - we can only make definite statements if molecular component dominates!
 - assume: $\pi(1800)$ is mostly a glueball molecular state
- Phenomenology of glueball molecules: production
 - the molecular state \mathscr{P} can be produced where the glueballs can be produced
 - heavy ion collisions
 - decays of the heavy quark states such as $J/\psi
 ightarrow \gamma \pi \mathscr{P}$
- Phenomenology of glueball molecules: decay patterns
 - decays of the molecular state \mathscr{P} are driven by the glueball decay
 - decays $\mathscr{P} \to 3\pi$, $\mathscr{P} \to \pi K K$, etc. can be related
 - decays in the f_0 states can be related

Glueball molecules: decays into f_0 states

- Study decay patterns into the f_0 states:
 - assume: $\pi(1800)$ is mostly a glueball molecular state
 - decays $\pi(1800) \rightarrow \pi f_0(1500)$ and $\pi(1800) \rightarrow \pi f_0(1370)$ can be related
- Recall: the f_0 states seem to contain varying amounts of glue

$$\begin{pmatrix} |f_0(1370)\rangle \\ |f_0(1500)\rangle \\ |f_0(1710)\rangle \end{pmatrix} = \begin{pmatrix} 0.819(89) & 0.290(91) & -0.495(118) \\ -0.399(113) & 0.908(37) & -0.128(52) \\ 0.413(87) & 0.302(52) & 0.859(54) \end{pmatrix} \begin{pmatrix} |N\rangle \\ |S\rangle \\ |G\rangle \end{pmatrix}$$

• ... then the decay amplitude for a decay into an f_0 state can be written as

 $\mathcal{A}(\pi(1800) \to \pi f_0) = \langle f_0 | G \rangle \langle \pi G | \mathcal{H} | \pi(1800) \rangle$

• ... where for different f_0 states we can write (must invert the matrix above)

 $|G\rangle = \langle f_0(1370|G\rangle | f_0(1370) \rangle + \langle f_0(1500) | G\rangle | f_0(1500) \rangle$

 $+ \langle f_0(1710) | G \rangle | f_0(1710) \rangle$

• Recall: the f_0 states seem to contain varying amounts of glue

 $\mathbb{F} = \mathbb{M} \mathbb{Q},$

$$\mathbb{M}_{1} = \begin{pmatrix} 0.78 & 0.51 & -0.36 \\ -0.54 & 0.84 & -0.03 \\ 0.32 & 0.18 & 0.93 \end{pmatrix} \qquad \mathbb{M}_{2} = \begin{pmatrix} 0.79 & -0.54 & 0.29 \\ 0.49 & 0.84 & 0.22 \\ -0.37 & 0.023 & 0.93 \end{pmatrix}$$

• ... then the ratios of the branching ratios can be written as

$$\frac{\mathcal{B}(\pi(1800) \to \pi f_0(1500))}{\mathcal{B}(\pi(1800) \to \pi f_0(1370))} = \left| \frac{\langle f_0(1500) | G \rangle}{\langle f_0(1370) | G \rangle} \right|^2 r_p \quad \text{with} \ r_p = p_{f_0(1500)} / p_{f_0(1500)}$$

• ... then numerically

$$\frac{\mathcal{B}(\pi(1800) \to \pi f_0(1500))}{\mathcal{B}(\pi(1800) \to \pi f_0(1370))} = (4 \div 7) \times 10^{-3}$$

- Glueballs are expected to be there from QCD
 - smaller widths, at least from the large N_c arguments
 - possible large mixing with highly excited $q\bar{q}$ states
 - expect unusually long-lived highly excited states
- Proposed a new mechanism for "glueball hadronization"
- Alternatively can be viewed as a "glueball excitation of a qq-bar or a qqq state"
 - has direct implications for the N* program at JLab
 - opens up new opportunities in identifying gluon degrees of freedom of ordinary hadrons
- How do you know that X(3872) and other molecules/tetraquarks contain charmed quarks? What about new pentaquark states?

π (1800) as a glueball molecule

-1