CDCS P. Connor

Introduction

Experiment analysis

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH 1/29

Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ Computational Discussions with Coffee and Sweets

Patrick L.S. CONNOR

Universität Hamburg

5 April 2022

Bundesministerium für Bildung und Forschung

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE CDCS CENTER FOR DATA AND COMPUTING IN NATURAL SCIENCES

Introduction

Reminder Goal Motivation Experimental data

Reminder LHC & CMS

CDCS P. Connor

Introduction Reminder Goal Motivation Experimental data

Experimental analysis

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH 2/29

CDCS

P. Connor

Introduction Reminder Goal Motivation Experimental data

Experimental analysis

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH 2/29

 $-\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{ade}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\mu \bar{G}^a G^b g_\mu^c - \partial_\nu W_\mu^+ \partial_\nu W_\mu^- -$ 2 $M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c^2_{\nu}} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} \partial_{\mu}$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{a^{2}} + \frac{1}{2}M\phi^{0}\phi^{0} - \frac{1}{2}M$ $\frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h - igc_w[\partial_\nu Z^0_a(W^+_aW^-_\nu - \psi^+_a)]$ $W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} - W^-_{\mu})$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})]$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})]$ $W_{\mu}^{+}W_{\mu}^{-}$ $- 2A_{\mu}Z_{\mu}^{0}W_{\mu}^{+}W_{\mu}^{-} - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{2}q^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{+}+\frac{1}{2}g[W^{+}_{\mu}(H\partial_$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g \frac{1}{2} (Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig \frac{s_{\mu}^{2}}{2}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) +$ $igs_w MA_{\mu} (W_{\mu}^+ \phi^- - W_{\mu}^- \phi^+) - ig \tfrac{1-2c_w^2}{2c_w} Z_{\mu}^0 (\phi^+ \partial_{\mu} \phi^- - \phi^- \partial_{\mu} \phi^+) + \\$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] \frac{1}{4}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu [H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}\tilde{A}_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{2}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - G_{\mu}^{-}\phi^{+})$ $g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^{\lambda} (\gamma \partial + m_e^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \bar{\nu}^{\lambda} - \bar{u}_i^{\lambda} (\gamma \partial + m_e^{\lambda}) u_i^{\lambda} -$ 3 $\overline{d}_{i}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}[-(\overline{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{2}(\overline{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{2}(\overline{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})] +$ $\frac{ig}{4s}Z_{\mu}^{0}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{2}s_{w}^{2}-1-\gamma^{5})e^{\lambda})]$ $(1 - \gamma^5)u_i^{\lambda}) + (\bar{d}_i^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_i^{\lambda})] + \frac{ig}{2\sqrt{2}}W^+_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + \frac{ig}{2\sqrt{2}}W^+_{\mu}](\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + \gamma^5)e^{\lambda}$ $(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{i}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{i}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]$ $\gamma^{5}(u_{i}^{\lambda})] + \left[\frac{ig}{2\sqrt{\sigma}}\frac{m_{e}^{\lambda}}{M}\left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right] - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})e^{\lambda})\right]$ $\frac{4}{2} \frac{g m_{\epsilon}^{\lambda}}{M} [H(\bar{e}^{\lambda} e^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda} \gamma^{5} e^{\lambda})] + \frac{ig}{2M\sqrt{2}} \phi^{+} [-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda} C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})]$ $\gamma^{5}u_{i}^{\kappa}] - \frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{i}^{\lambda}u_{j}^{\lambda}) - \frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{i}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{u}^{\lambda}}{M}\phi^{0}(\bar{u}_{i}^{\lambda}\gamma^{5}u_{j}^{\lambda}) \frac{ig}{\partial \lambda} \frac{m_{\lambda}^{\lambda}}{M} \phi^0(\bar{d}_i^{\lambda} \gamma^5 d_i^{\lambda}) + \bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - M^2) X^ \frac{M^2}{d^2}X^0 + \overline{Y}\partial^2 \overline{Y} + igc_w W^+_u(\partial_\mu \overline{X}^0 X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu \overline{X}^+ X^0) + igs_w W^+_u(\partial_\mu$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$ $\partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igc$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{2}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_{w}^{2}}{2c}igM[\bar{X}^{+}X^{0}\phi^{+}-\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c}igM[\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-}] +$ $iqMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}iqM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

Reminder Standard Model

Lagrangian of the SM

1 QCD sector

- **2** EW sector for boson-only interactions
- **3** EW sector for boson-fermions interactions
- (Higgs ghosts)
- (Faddeev-Popov ghosts)

CDCS

P. Connor

Introduction Reminder Goal Motivation Experimental data

Experimental analysis

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH 2/29

$-\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{ade}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\mu \bar{G}^a G^b g_\mu^c - \partial_\nu W_\mu^+ \partial_\nu W_\mu^- -$ 2 $M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c^2_{\nu}} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} \partial_{\mu}$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{a^{2}} + \frac{1}{2}M\phi^{0}\phi^{0} - \frac{1}{2}M$ $\frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\mu - \psi^+_\mu W^-_\mu)]$ $W^+_{\nu} \bar{W}^-_{\mu}) - Z^0_{\nu} (W^+_{\mu} \partial_{\nu} W^-_{\mu} - W^-_{\mu} \partial_{\nu} W^+_{\mu}) + Z^0_{\mu} (W^+_{\nu} \partial_{\nu} W^-_{\mu} - W^-_{\mu} \partial_{\nu} W^+_{\mu})$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})]$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} +$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})]$ $W_{\mu}^{+}W_{\mu}^{-}$ $- 2A_{\mu}Z_{\mu}^{0}W_{\mu}^{+}W_{\mu}^{-} - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{2}q^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}($ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g \frac{1}{2} (Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig \frac{s_{\mu}^{2}}{2}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) +$ $igs_w MA_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) - ig \frac{1-2c_w^2}{2c_w} Z^0_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] \frac{1}{4}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu [H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^-)^2 + \frac{1}{2}g^2 \frac{s^2_w}{c} Z^$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}\tilde{A}_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{2}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - G_{\mu}^{-}\phi^{+})$ $g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^{\lambda} (\gamma \partial + m_e^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_i^{\lambda} (\gamma \partial + m_u^{\lambda}) u_i^{\lambda} \frac{1}{3} \quad \overline{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + igs_{w} A_{\mu} [-(\overline{e}^{\lambda} \gamma^{\mu} e^{\lambda}) + \frac{2}{3} (\overline{u}_{i}^{\lambda} \gamma^{\mu} u_{i}^{\lambda}) - \frac{1}{3} (\overline{d}_{i}^{\lambda} \gamma^{\mu} d_{i}^{\lambda})] + \frac{1}{3} (\overline{d}_{i}^{\lambda} \gamma^{\mu} d_{i}^{\lambda}) + \frac{1}{3} (\overline{d}_{i}^{\lambda}$ $\frac{ig}{4s}Z_{\mu}^{0}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{2}s_{w}^{2}-1-\gamma^{5})e^{\lambda})]$ $(1 - \gamma^5)u_i^{\lambda}) + (\bar{d}_i^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_i^{\lambda})] + \frac{ig}{2\sqrt{2}}W^+_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + \frac{ig}{2\sqrt{2}}W^+_{\mu}](\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + \gamma^5)e^{\lambda}$ $(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda})]$ $\gamma^{5}(u_{i}^{\lambda})] + \frac{ig}{2\sqrt{a}} \frac{m_{e}^{\lambda}}{M} [-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] \frac{4}{2} \frac{g m_{\epsilon}^{\lambda}}{M} [H(\bar{e}^{\lambda} e^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda} \gamma^{5} e^{\lambda})] + \frac{ig}{2M\sqrt{2}} \phi^{+} [-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda} C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa})$ $\gamma^5 u_i^\kappa] - \frac{g}{2} \frac{m_u^\lambda}{M} H(\bar{u}_i^\lambda u_i^\lambda) - \frac{g}{2} \frac{m_d^\lambda}{M} H(\bar{d}_i^\lambda d_i^\lambda) + \frac{ig}{2} \frac{m_u^\lambda}{M} \phi^0(\bar{u}_i^\lambda \gamma^5 u_i^\lambda) \frac{ig}{\partial \lambda} \frac{m_{\lambda}^{\lambda}}{M} \phi^0(\bar{d}_i^{\lambda} \gamma^5 d_i^{\lambda}) + \bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - M^2) X^ \frac{M^2}{d^2}X^0 + \overline{Y}\partial^2 Y + igc_w W^+_u (\partial_\mu \overline{X}^0 X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- + igs_w W^+_u (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{Y} X^- + igs_w W^+_u (\partial_\mu \overline{Y} X^- + igs_w W^+$ $\overset{w}{\partial}_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$ $\partial_{\mu}\bar{Y}X^{+}) + igc_wZ^0_{\mu}(\partial_{\mu}\bar{X}^+X^+ - \partial_{\mu}\bar{X}^-X^-) + igs_wA_{\mu}(\partial_{\mu}\bar{X}^+X^+ - \partial_{\mu}\bar{X}^-X^-)$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{2}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_{w}^{2}}{2c}igM[\bar{X}^{+}X^{0}\phi^{+}-\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c}igM[\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-}] +$ $iqMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}iqM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

Reminder Standard Model

Lagrangian of the SM

1 QCD sector

- **2** EW sector for boson-only interactions
- S EW sector for boson-fermions interactions
- (Higgs ghosts)
- (Faddeev-Popov ghosts)

At LHC

Since we essentially collide protons, which are composite particles made of quarks and gluons strongly interacting, 99% of the interactions can be explained with QCD only!

CDCS P. Connor

Introduction Reminder Goal Motivation Experimental data

Experimental analysis

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH 2/29

Reminder Phenomenology

Total cross section at LHC at $13~{ m TeV}$

type	total cross section
total	$\sim 100 \ {\rm mb}$
elastic	$\sim 24 \text{ mb}$
inelastic	$\sim 76 { m ~mb}$
\rightarrow single-diffractive	$\sim 15 \text{ mb}$
ightarrow double-diffractive	$\sim 10 \text{ mb}$
ightarrow central-diffractive	$\sim 1 \text{ mb}$
\rightarrow non-diffractive	$\sim 50 \ {\rm mb}$

PYTHIA 8 prediction at $\sqrt{s}=13~{\rm TeV}$

CDCS P. Connor

Introduction Reminder Goal Motivation Experimental data

Experimental analysis

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH #

Reminder Phenomenology

Total cross section at LHC at 13 TeV

type	total cross section
total	$\sim 100 \text{ mb}$
elastic	$\sim 24 \text{ mb}$
inelastic	$\sim 76 { m ~mb}$
\rightarrow single-diffractive	$\sim 15 \text{ mb}$
ightarrow double-diffractive	$\sim 10 \ {\rm mb}$
ightarrow central-diffractive	$\sim 1 \text{ mb}$
ightarrow non-diffractive	$\sim 50 \text{ mb}$

PYTHIA 8 prediction at $\sqrt{s}=13~{\rm TeV}$

Type of collisions of interest for this measurement

Inelastic non-diffractive scattering with large momentum transfer in proton-proton collisions

 $\sigma(p_{
m T}>15~{
m GeV})pprox 1-2~{
m mb}$ only

and this is still a huge background for most analyses...

Jets

- Collection of particles in a region of the detector.
- Result of strong interactions (hadronisation process).
- Directly probing highest-energy part of the process.

UΗ ЦЦ, 5/29

Reminder

analysis

Results

Methods

Back-up

Jets

Reminder

analysis

Results

Methods

Back-up

UH

5/29

Ĥ

- Collection of particles in a region of the detector.
- Result of strong interactions (hadronisation process).
- Directly probing highest-energy part of the process.

Clustering algorithms [1, 2]

- Cambridge-Aachen
- **k**T
- anti- $k_{\rm T}$
- \longrightarrow free parameter R

Reminder Goal

analysis

Results

Interpreta-

Summary &

UH H. 6/29

Back-up

Inclusive jet production

Measure the double-differential cross section

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} = \frac{1}{\mathcal{L}} \frac{N_{\mathrm{jets}}^{\mathrm{eff}}}{\Delta p_{\mathrm{T}}\,\Delta y}$$

with recorded at the CMS experiment in pp collisions during the year 2016.

 $p_{\rm T}$ transverse momentum;

y rapidity
$$\equiv \log \frac{E+p_z}{E-p_z} \sim -\log \tan \frac{\theta}{2}$$

effective number of jets after all corrections from $N_{\rm iets}^{\rm eff}$ experimental effects;

 \mathcal{L} integrated luminosity.

Goal

(1)

Introduction Reminder Goal Motivation Experimental data

Experimental analysis

Results

Interpretation

Methods

Summary & Conclusions

Back-up

1. conno

Inclusive jet production

Measure the double-differential cross section

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} = \frac{1}{\mathcal{L}} \frac{N_{\mathrm{jets}}^{\mathrm{eff}}}{\Delta p_{\mathrm{T}}\,\Delta y}$$

with recorded at the CMS experiment in pp collisions during the year 2016.

 p_{T} transverse momentum;

$$y$$
 rapidity $\equiv \log \frac{E+p_z}{E-p_z} \sim -\log \tan \frac{\theta}{2};$

- ^{reff}_{jets} effective number of jets after all corrections from experimental effects;
- N

(1)

 $\mathcal L$ integrated luminosity.

Challenge

UH () 6/29 Achieve **percent-level** precision of a **steeply falling** spectrum over several orders of magnitude and demonstrate usability of the data by global PDF collaborations and for searches!

Goal

CDCS

P. Connor

Reminder Motivation Experimental data

Experimental analysis

Results

Interpretation

Methods

Summary &

Back-up

Factorisation [3]

experir

$$\underbrace{\sigma_{pp \to jet+X}}_{\text{experimental data}} = \sum_{ij \in gq\bar{q}} \overbrace{f_i(x_i, \mu_F^2) \otimes f_j(x_j, \mu_F^2)}^{\text{PDFs}} \\ \otimes \hat{\sigma}_{ij \to jet+X} \left(x_i, x_j, \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2}, \alpha_S(\mu_R^2) \right)$$
State-of calculat NNLO o

SM or ...

f-the art ions r NLO+NLL FO

Motivation

predictions.

UΗ 闬 CDCS

P. Connor

Reminder Motivation

analysis

Results

Interpreta-

Methods

Summary &

Back-up

UH Ĥ

Factorisation [3]

Motivation

 $\underbrace{\sigma_{pp \to \mathsf{jet}+X}}_{f_i(x_i, \mu_F^2) \otimes f_j(x_j, \mu_F^2)} = \sum f_i(x_i, \mu_F^2) \otimes f_j(x_j, \mu_F^2)$ $ij \in gq\bar{q}$ experimental data

$$\bigotimes \underbrace{\hat{\sigma}_{ij \to \mathsf{jet}+X}\left(x_i, x_j, \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2}, \alpha_S(\mu_R^2)\right)}_{\mathsf{SM or SMEET}}$$

PDFs

SIVI OF SIVIEF I

State-of-the art calculations

NNLO or NLO+NLL FO predictions.

Contact Interactions (CIs)

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \frac{4\pi}{2\Lambda^2} \sum_n c_n O_n$$

CI model	c_1	c_3	c_5				
Purely left-handed	free	0	0				
Vector-like	free	$2c_1$	c_1				
Axial-vector-like	free	$-2c_{1}$	c_1				
NB: colour-singlet model							

х

Motivation

Former inclusive jet measurements at LHC

\sqrt{s}	ATLAS	CMS
 $2.76 { m ~TeV}$	0.0002 fb^{-1} [4]	0.0054 fb^{-1} [5]
$7 { m TeV}$	4.5 fb^{-1} [6]	5.0 fb ⁻¹ [7, 8]
$8 { m TeV}$	20 fb^{-1} [9]	20 fb^{-1} [10]
$13 { m TeV}$	3.2 fb^{-1} [11]	0.071 fb^{-1} [12]

UΗ 붜

Summary & Back-up

Experimental analysis

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH # 8/29

Motivation

Former inclusive jet measurements at LHC

\sqrt{s}	ATLAS	CMS
2.76 TeV	0.0002 fb^{-1} [4]	0.0054 fb^{-1} [5]
$7 { m TeV}$	4.5 fb^{-1} [6]	5.0 fb ⁻¹ [7, 8]
8 TeV	20 fb^{-1} [9]	20 fb^{-1} [10]
$13 { m TeV}$	3.2 fb^{-1} [11]	0.071 fb^{-1} [12]

Searches for CIs at CMS [13, 14]

- Fold SMEFT predictions with existing PDF.
- Constrain Cls (Wilson coefficient c_1).

Question

But what if the CIs have already been absorbed in the PDF?

CDCS

P. Connor

Introduction Reminder Goal Motivation Experimental data

Experimental analysis

Results

Interpretation

Methods

Summary & Conclusions

Back-up

duction

 m_t , and Wilson coefficient c_1 !

Motivation

Phase space [15]

• $p_T > 97 \text{ GeV}$ • |y| < 2.0

Measurement

 High-PU 2016 data using anti-k_T jet clustering algorithm.

Perform simultaneous fit of PDFs, α_S ,

Systematic effects corrected via 2D sample unfolding.

QCD interpretation

Using xFitter [16, 17]:

- HERA DIS data [18],
- CMS $t\bar{t}$ 3D cross section at 13 TeV [19],
- CMS inclusive jet 2D cross section at 13 TeV [20].

Experimental data

9/29

Ĥ

UH

Experimental analysis

Strategy Counting Jet energy calibration Pile-up corrections Unfolding

·0·

Results Interpretation

CDCS

P. Connor

Introduction

Experimental

analysis Strategy Counting Jet energy calibration

Pile-up corrections Unfolding

Methods

Summary & Conclusions

Back-up

UH # 10/29

Pile-up Unfolding Results

CDCS

P. Connor

Interpretation

Methods

Summary &

Back-up

UΗ 븸

analysis Strategy Counting

P Connor

- Jet energy
- calibration Pile-up corrections
- Results
- Interpretation
- Methods
- Summary & Conclusions
- Back-up

UH

Data

- $\mathcal{L}_{int} = 36.3(33.5) \text{ fb}^{-1}.$
- Jet clustering with AK4 (AK7).

Corrections

- Counting
- Jet energy corrections
- Pile-up corrections
- Unfolding with simulated data

Jet

N

Interpretation

P Connor

- Methods
- Summary & Conclusions
- Back-up

- Counting
- Jet energy corrections
- Pile-up corrections
- Unfolding with simulated data

generator	PDF	matrix element	tune
Рүтніа 8 (230) [21]	NNPDF 2.3 [22]	LO $2 \rightarrow 2$	CUETP8M1 [23]
MadGraph_MC@NLO (2.4.3) [24, 25]	NNPDF 2.3 [22]	LO $2 \rightarrow 2, 3, 4$	CUETP8M1 [23]
Herwig++ (2.7.1) [26]	CTEQ6L1 [27]	LO $2 \rightarrow 2$	CUETHppS1 [23]

CDCS

P. Connor

ntroduction

Experimen analysis Strategy Counting Jet energy calibration

Pile-up correction Unfolding

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH 12/29

Triggers

- \blacksquare Bunches cross every $25 \ ns$ at CMS
 - \longrightarrow production rate is several order of magnitudes too large to record all jets.
- Record jets with different rates according to their energy
 - \longrightarrow multiply by prescale factor in counting of jets for calculation of cross section.

 \rightarrow Fast reconstruction algorithm (L1 & HLT) are used to identify on the fly the presence of jets, then roughly estimate their energy.

Counting

$p_{T}^{HLT}(GeV)$	40	60	80	140	200	260	320	400	450
$p_T^{PF}(GeV)$	74–97	97-133	133-196	196-272	272-362	362-430	430-548	548-592	>592
$\mathcal{L}(pb^{-1})$	0.267	0.726	2.76	24.2	103	594	1770	5190	36300

CDCS

P. Connor

ntroduction

Experimen analysis Strategy Counting Jet energy calibration

Pile-up corrections Unfolding

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH #12/29

Triggers

- \blacksquare Bunches cross every $25 \ ns$ at CMS
 - \longrightarrow production rate is several order of magnitudes too large to record all jets.
- Record jets with different rates according to their energy
 - \longrightarrow multiply by prescale factor in counting of jets for calculation of cross section.
- \rightarrow Fast reconstruction algorithm (L1 & HLT) are used to identify on the fly the presence of jets, then roughly estimate their energy.

Counting

$p_{T}^{HLT}(GeV)$	40	60	80	140	200	260	320	400	450
$p_{T}^{PF}(GeV)$	74–97	97-133	133-196	196-272	272-362	362-430	430-548	548-592	>592
$\mathcal{L}(pb^{-1})$	0.267	0.726	2.76	24.2	103	594	1770	5190	36300

Uncertainties

- Statistical correlations (multi-count observable)
- Luminosity \mathcal{L} (correlated 1.2%)

- Trigger uncertainty (uncorrelated 0.2%)
- Inefficiencies (e.g. ECAL prefiring)

CDCS P. Connor

Introduction

Experiment analysis Strategy Counting Jet energy calibration Pile-up corrections

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH # 13/29

Jet energy calibration

Corrections

Scale $\langle p_{\rm T}^{\rm gen} \rangle \approx \langle p_{\rm T}^{\rm rec} \rangle$ both in real and simulated data

Resolution smearing rate from true level to detector level should be the same in simulated data as in real data

 \rightarrow Many sources of uncertainties related to various effects (not discussed in this presentation).

CDCS

P. Connor

Introduction

Experiment analysis Strategy Counting Jet energy calibration Pile-up corrections

Results

Interpretation

Methods

Summary & Conclusions

Back-up

UH 14/29

Pile-up corrections

Reminder

Several pp collisions at each bunch crossing:

Pros higher chances for rare events (high $p_{\rm T}$).

Cons

- distinctions among collisions more difficult (multiplicity);
 - additional contribution to jets (offset).

PU profile correction

Correct the profile of simulated data to profile in real data by event reweighting \longrightarrow additional uncertainty from minimum-bias cross section.

Unfolding

CMS Simulation 13 TeV (2000 9 1000 ly^{pm}1 < 0.5 0.5 < 10⁴⁴ | < 1.0 1.0 < 10⁴⁴ | < 1.5 1.5 < 10¹ Anti-k_T (R=0.7) Pythia 8 °., Probability matri 200 Jet 10-100 2000 1000 10^{-2} 200 100 2000 1000 10-3 200 100 2000 1000 10-4 200 100 2000 10-5 1000 200 1000 100 1000 Jet p_ (GeV) 1000 100 1000 100 1000 100

Matrix inversion

For binned data:

$$\mathbf{A}\mathbf{x} + \mathbf{b} = \mathbf{y} \tag{2}$$

- x data distribution at particle level
- y data distribution at detector level
- **b** background spectrum at detector level
- A probability matrix (figure)

 \longrightarrow instable...

Least-square minimisation [28, 29]

with #detector-level bins = $2 \times \#$ particle-level bins

(but no Tikhonov regularisation)

$$\chi^{2} = \min_{\mathbf{x}} \left[(\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{y})^{\mathsf{T}} \mathbf{V}^{-1} \left(\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{y} \right) \right]$$
(3)

V covariance matrix accounting for partial correlations

ntroduction

Results

Interpretation

Methods

Summary & Conclusions

Back-up

CDCS P Connor

analysis Unfolding

Interpreta-

Summary &

Back-up

UH ΗĤ 18/29

Unfolding

Uncertainties

- The limited statistics of the simulated data contributes as an extra uncertainty.
- Additional uncertainties on migrations across the edges of the phase space are included (but very small).

All other uncertainties are inferred to particle-level by applying the variations either in the input data or in the probability matrix (and smoothed).

33.5 fb⁻¹ (13 TeV)

Results

Overview Event display Comparison

P. Connor

Experimental

analysis

Results

Overview

Interpreta-

Methods

Back-up

Summary &

Event display

Overview

UH # 19/29

analysis

Results

Overview

Interpreta-

Methods

Back-up

Summary &

Overview

Remark

- Looking for percent-level precision in steeply falling spectrum...
- But logarithmic scale can hide monsters!
- \rightarrow Apply tests of smoothness [30] (more at the symposium!).

UH #19/29

CMS Experiment at the LHC, CERN Data recorded: 2016-Sep-27 14:40:45.336640 GMT Run / Event / LS: 281707 / 1353407816 / 851

Comparison

Inclusive jet cross section (SMP-20-011 [20])

 Comparison to various global PDF [18, 32, 33, 34, 35] sets with NLO+NLL [36].

UH # 21/29

CDCS

P. Connor

Introduction

Experimenta analysis

Results Overview Event displa Comparison

Interpretation

Methods

Summary & Conclusions

 $\mathsf{Back}\mathsf{-up}$

Comparison

Inclusive jet cross section (SMP-20-011 [20])

- Comparison to various global PDF [18, 32, 33, 34, 35] sets with NLO+NLL [36].
- Comparison to NNLO obtained with NNLOJET [37, 38, 39].

CDCS

P. Connor

Introduction

Experimenta analysis

Results Overview Event displa Comparison

Interpretation

Methods

Summary & Conclusions Back-up

> UH 21/29

Interpretation

Strategy SM fits SMEFT fits

Impact on PDFs

- Profiling investigate reduction of uncertainties on existing PDF sets(not discussed here).
- Full fits take a parameterisation of PDF sets and combine data with other data sets.

 \rightarrow Here, we perform **full fits** with FO predictions at NNLO with present data combined to HERA DIS data and to a former CMS $t\bar{t}$ measurement at 13 TeV, and extract $\alpha_S(M_Z)$ and m_t in addition to PDFs.

Search for CIs

Using the same data sets, we perform fits at NLO+NLL with a fit of the c_1 Wilson coefficient in addition.

UH #

CDCS

P Connor

analysis

Interpretation Strategy

Methods

Back-up

Summary &

Experimental analysis

Results

Interpretation

SM fits SMEFT fit

Methods

Summary & Conclusions

UHI #

 $\mathsf{Back}\mathsf{-up}$

SM fits

Parameterisation

$$\begin{split} xg(x) &= A_g x^{B_g} (1-x)^{C_g} (1+E_g x^2) \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+D_{u_v} x) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} \\ x\overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}} \end{split}$$

Results

Strong reduction of the gluon PDF uncertainty.

Experimenta analysis

- Results
- Interpretation Strategy

SM fits SMEFT fit

Methods

Summary & Conclusions

UH

23/29

Ĥ

Back-up

SM fits

Parameterisation

$$\begin{split} xg(x) &= A_g x^{B_g} (1-x)^{C_g} (1+E_g x^2) \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+D_{u_v} x) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} \\ x\overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}} \end{split}$$

Results

- Strong reduction of the gluon PDF uncertainty.
- Strong reduction of α_S uncertainty.

SM parameters

 $\alpha_S = 0.1188 \pm 0.0017 (\text{fit}) \pm 0.0022 (\text{model and param.})$

 $m_t^{\mathsf{pole}} = 170.4 \pm 0.6 (\mathsf{fit}) \pm 0.1 (\mathsf{model} \text{ and } \mathsf{param.})$

SM fits

		HERA-only	HERA+CMS
Data sets		Partial $\chi^2/N_{\sf dp}$	Partial $\chi^2/N_{\sf dp}$
HERA I+II neutral current	$e^+p, E_p = 920 \text{ GeV}$	378/332	375/332
HERA I+II neutral current	e^+p , $E_p = 820 \text{ GeV}$	60/63	60/63
HERA I+II neutral current	e^+p , $E_p = 575 \text{ GeV}$	201/234	201/234
HERA I+II neutral current	e^+p , $E_p = 460 \text{ GeV}$	208/187	209/187
HERA I+II neutral current	e^-p , $E_p = 920 \text{ GeV}$	223/159	227/159
HERA I+II charged current	e^+p , $E_p = 920 \text{ GeV}$	46/39	46/39
HERA I+II charged current	e^-p , $E_p = 920 \text{ GeV}$	55/42	56/42
CMS inclusive jets $13 { m TeV}$	0.0 < y < 0.5	—	13/22
	0.5 < y < 1.0	—	31/21
	1.0 < y < 1.5	—	18/19
	1.5 < y < 2.0	—	14/16
Correlated χ^2		66	83
Global $\chi^2/N_{\sf dof}$		1231/1043	1321/1118

Introduction

CDCS

P. Connor

Experimental analysis

Results

Interpretation

Strategy SM fits SMEFT fits

Methods

Summary & Conclusions

Back-up

UH #

analysis Results

Interpreta-

SM fits SMEET fits

Summary &

UH

25/29

梢

Back-up

SMEFT fits

Parameterisation

$$\begin{split} & xg(x) = A_g x^{B_g} (1-x)^{C_g} (1+E_g x^2) \\ & xu_v(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+D_{u_v} x+E_{u_v} x^2) \\ & xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} (1+D_{d_v} x) \\ & x\overline{U}(x) = A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} \\ & x\overline{D}(x) = A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}} \end{split}$$

Results

SMEFT fits lead to results compatible w. SM.

Methods DAS CDCS

DAS Motivations

Das Analysis-System (https://gitlab.cern.ch/DasAnalysisSystem)

- Recompile the code while some jobs were running
- Take a whole week to produce n-tuples
- Lost in one's own code
- Lost with large amount of flags
- Wait 24h to check the implementation of a new feature
- Compilation takes a few minutes
- Normalisation failing after a looong event loop

- Analysis code is 5000 lines long
- Synchronisation with other analyses too difficult
- Not enough storage for different versions of the n-tuples
- Missing documentation
- Code gets broken after an unfortunate push from a colleague
- One event in the middle of the n-tuple is corrupted
- etc.

 \rightarrow Design of analysis software optimises debugging time.

Physics analyses

- Many similar analyses sensitive to the same physics.
- Non-replicable results & inconsistent analysis strategies.
- Short-term development & no view beyond ongoing analyses.
- \rightarrow Trying to improve re-usability of implementation!

P. Connor

Introduction

Experimental analysis

Results

Interpretation

Methods DAS CDCS

Summary & Conclusions

Back-up

UH 26/29

DAS

Principles

The three principles

- 1 A data format
- **2** Good programming conventions
- 8 Series of existing tools

 \rightarrow essential

 \longrightarrow exceptions should be allowed

 \longrightarrow up to the user

UH 27/29

analysis Results

CDCS

P. Connor

Interpretation

Methods DAS CDCS

Summary & Conclusions

Back-up

CDCS

Introduction

CDCS

P Connor

Experimenta analysis

Results

Interpretation

Methods DAS CDCS

Summary & Conclusions

Back-up

UH # 28/29

Smoothness

- Test quality of statistical description of differential distributions.
- Serious impact on QCD fits.
- \longrightarrow paper in preparation & presentation at symposium!

Refinement

- By-pass time-expensive simulation of the detector with fast-simulation and machine-learning techniques.
- Allow large statistical samples to better describe uncovered systematic effects (*e.g.* model uncertainties).
- \longrightarrow poster by Shruthi JANARDHAN at symposium!

Summary & Conclusions

CDCS P Connor

Introduction

Experimental analysis

Results

Interpretation

Methods

Summary & Conclusions

Back-up

Uн

Ĥ

29/29

Summary & Conclusions

- The CMS Collaboration has produced a measurement of inclusive jet production in pp collisions at 13 TeV:
 - the experimental analysis includes corrections to the jet count, the jet energy, and the pile-up; all effects are corrected via the procedure of unfolding;
 - data are compared to FO predictions at NLO+NLL and NNLO.
- A novel QCD interpretation including profiling studies and unbiased search for CI has been presented:
 - one of the most precise measurements of the strong coupling;
 - no evidence for CI has been found.

...

- Several advanced developments have started with this analysis and are continuing:
 - a framework optimised for debugging and replicability;
 - specific methods, such as tests of smoothness and refinement;

 \longrightarrow The paper has been recently published in JHEP!

Thank you for your attention!

Back-up

Acronyms I

Acronyms References Visiting card

CDCS

P Connor

- AK4 anti k_T algorithm (R = 0.4). 20, 21 AK7 anti k_T algorithm (R = 0.7). 20, 21
- CI Contact Interaction. 12-15, 37, 47
- CMS Compact Muon Solenoid. 3, 10, 11, 14–16, 22, 23, 37, 47
- DIS Deeply Inelastic Scattering. 16, 37
- ECAL Electromagnetic CALorimeter. 22, 23 EW Electroweak, 4, 5
 - FO fixed order. 12, 13, 37, 47
- HERA Hadron-Elektron-RingAnlage. 16, 37 HLT High-Level Trigger. 22, 23

- L1 Level 1. 22, 23
- LHC Large Hadron Collider. 3-7, 14, 15
- NLL Next to Leading Logarithm. 12, 13, 34, 35, 37, 47
- NLO Next to Leading Order. 12, 13, 34, 35, 37, 47
- NNLO Next to Next to Leading Order. 12, 13, 34, 35, 37, 47
- PDF Parton Distribution Function. 10–16, 34, 35, 37–39
- PU Pile-Up. 16, 25
- QCD Quantum Chromodynamics. 4, 5, 16, 45, 47
- SM
 Standard Model.
 4, 5, 12, 13, 38, 39, 41

 SMEFT
 Standard Model Effective Field Theory.
 12–15, 41

References I

Acronyms References Visiting card

CDCS

P Connor

Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. "The anti-k_t jet clustering algorithm". In: JHEP 04 (2008), p. 063. DOI: 10.1088/1126-6708/2008/04/063. arXiv: 0802.1189 [hep-ph].

- Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. "FastJet User Manual". In: Eur. Phys. J. C 72 (2012), p. 1896. DOI: 10.1140/epjc/s10052-012-1896-2. arXiv: 1111.6097 [hep-ph].
- John C. Collins, Davison E. Soper, and George F. Sterman. "Factorization of Hard Processes in QCD". In: Adv. Ser. Direct. High Energy Phys. 5 (1989), pp. 1–91. DOI: 10.1142/9789814503266_0001. arXiv: hep-ph/0409313 [hep-ph].

Georges Aad et al. "Measurement of the inclusive jet cross section in pp collisions at $\sqrt{s} = 2.76$ TeV and comparison to the inclusive jet cross section at $\sqrt{s} = 7$ TeV using the ATLAS detector". In: **Eur. Phys. J. C** 73 (2013), p. 2509. DOI: 10.1140/epjc/s10052-013-2509-4. arXiv: 1304.4739 [hep-ex].

Vardan Khachatryan et al. "Measurement of the inclusive jet cross section in pp collisions at $\sqrt{s} = 2.76 \text{ TeV}$ ". In: Eur. Phys. J. C 76 (2016), p. 265. DOI: 10.1140/epjc/s10052-016-4083-z. arXiv: 1512.06212 [hep-ex].

UH # 31/29

References II

Acronyms References Visiting card

CDCS

P Connor

Georges Aad et al. "Measurement of the inclusive jet cross-section in proton-proton collisions at $\sqrt{s} = 7$ TeV using 4.5 fb⁻¹ of data with the ATLAS detector". In: JHEP 02 (2015). [Erratum: JHEP09,141(2015)], p. 153. DOI: 10.1007/JHEP02(2015)153. arXiv: 1410.8857 [hep-ex].

- Serguei Chatrchyan et al. "Measurements of Differential Jet Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 7$ TeV with the CMS Detector". In: Phys. Rev. D 87 (2013). [Erratum: JHEP09,141(2015)], p. 112002. DOI: 10.1103/PhysRevD.87.112002. arXiv: 1212.6660 [hep-ex].
- Serguei Chatrchyan et al. "Measurement of the Ratio of Inclusive Jet Cross Sections using the Anti- k_T Algorithm with Radius Parameters R = 0.5 and 0.7 in pp Collisions at $\sqrt{s} = 7$ TeV". In: Phys. Rev. D 90 (2014), p. 072006. DOI: 10.1103/PhysRevD.90.072006. arXiv: 1406.0324 [hep-ex].
 - Morad Aaboud et al. "Measurement of the inclusive jet cross-sections in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector". In: JHEP 09 (2017), p. 020. DOI: 10.1007/JHEP09 (2017) 020. arXiv: 1706.03192 [hep-ex].

UH 22/29

References III

Acronyms References Visiting card

CDCS P Connor

- Vardan Khachatryan et al. "Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at $\sqrt{s} = 8$ TeV and cross section ratios to 2.76 and 7 TeV". In: **JHEP** 03 (2017), p. 156. DOI: 10.1007/JHEP03(2017)156. arXiv: 1609.05331 [hep-ex].
- M. Aaboud et al. "Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector". In: JHEP 05 (2018), p. 195. DOI: 10.1007/JHEP05(2018)195. arXiv: 1711.02692 [hep-ex].
- Vardan Khachatryan et al. "Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt{s} = 13$ TeV". In: Eur. Phys. J. C 76 (2016), p. 451. DOI: 10.1140/epjc/s10052-016-4286-3. arXiv: 1605.04436 [hep-ex].

- Serguei Chatrchyan et al. "Search for Contact Interactions Using the Inclusive Jet p_T Spectrum in pp Collisions at $\sqrt{s} = 7$ TeV". In: Phys. Rev. D 87 (2013), p. 052017. DOI: 10.1103/PhysRevD.87.052017. arXiv: 1301.5023 [hep-ex].
- Serguei Chatrchyan et al. "Search for quark compositeness in dijet angular distributions from pp collisions at $\sqrt{s} = 7$ TeV". In: JHEP 05 (2012), p. 055. DOI: 10.1007/JHEP05(2012)055. arXiv: 1202.5535.
- W.J. Stirling. Private communication. http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html. 2012.

References IV

Acronyms References Visiting card

CDCS

P Connor

- V. Bertone et al. "xFitter 2.0.0: An Open Source QCD Fit Framework". In: **PoS** DIS2017 (2018), p. 203. DOI: 10.22323/1.297.0203. arXiv: 1709.01151 [hep-ph].
- S. Alekhin et al. "HERAFitter, open source QCD fit project". In: Eur. Phys. J. C 75 (2015), p. 304. DOI: 10.1140/epjc/s10052-015-3480-z. arXiv: 1410.4412 [hep-ph].
- H. Abramowicz et al. "Combination of measurements of inclusive deep inelastic e[±]p scattering cross sections and QCD analysis of HERA data". In: Eur. Phys. J. C 75 (2015), p. 580. DOI: 10.1140/epjc/s10052-015-3710-4. arXiv: 1506.06042 [hep-ex].
- Albert M Sirunyan et al. "Measurement of tt normalised multi-differential cross sections in pp collisions at $\sqrt{s} = 13$ TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions". In: **Eur. Phys. J. C** 80 (2020), p. 658. DOI: 10.1140/epjc/s10052-020-7917-7. arXiv: 1904.05237 [hep-ex].
- Armen Tumasyan et al. "Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\sqrt{s} = 13$ TeV". In: (Nov. 2021). arXiv: 2111.10431 [hep-ex].
 - Torbjörn Sjöstrand et al. "An introduction to PYTHIA 8.2". In: Comput. Phys. Commun. 191 (2015), p. 159. DOI: 10.1016/j.cpc.2015.01.024. arXiv: 1410.3012 [hep-ph].

References V

Acronyms References Visiting card

CDCS

P Connor

Richard D. Ball et al. "Parton distributions with LHC data". In: Nucl. Phys. B 867 (2013), p. 244. DOI: 10.1016/j.nuclphysb.2012.10.003. arXiv: 1207.1303 [hep-ph].

Vardan Khachatryan et al. "Event generator tunes obtained from underlying event and multiparton scattering measurements". In: **Eur. Phys. J. C** 76 (2016), p. 155. DOI: 10.1140/epjc/s10052-016-3988-x. arXiv: 1512.00815 [hep-ex].

- Johan Alwall et al. "MadGraph 5 : going beyond". In: JHEP 06 (2011), p. 128. DOI: 10.1007/JHEP06(2011)128. arXiv: 1106.0522 [hep-ph].
- J. Alwall et al. "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations". In: JHEP 07 (2014), p. 079. DOI: 10.1007/JHEP07(2014)079. arXiv: 1405.0301 [hep-ph].
- M. Bahr et al. "Herwig++ physics and manual". In: Eur. Phys. J. C 58 (2008), p. 639. DOI: 10.1140/epjc/s10052-008-0798-9. arXiv: 0803.0883 [hep-ph].
- J. Pumplin et al. "New generation of parton distributions with uncertainties from global QCD analysis". In: JHEP 07 (2002), p. 012. DOI: 10.1088/1126-6708/2002/07/012. arXiv: hep-ph/0201195 [hep-ph].

References VI

Acronyms References Visiting card

CDCS

P Connor

- Stefan Schmitt. "TUnfold: an algorithm for correcting migration effects in high energy physics". In: JINST 7 (2012), T10003. DOI: 10.1088/1748-0221/7/10/T10003. arXiv: 1205.6201 [physics.data-an].
- Stefan Schmitt. "Data Unfolding Methods in High Energy Physics". In: EPJ Web Conf. 137 (2017), p. 11008. DOI: 10.1051/epjconf/201713711008. arXiv: 1611.01927 [physics.data-an].

- Patrick L. S. Connor and Radek Žlebčík. "Step: a tool to perform tests of smoothness on differential distributions based on Chebyshev polynomials of the first kind". In: (Nov. 2021). arXiv: 2111.09968 [hep-ph].
- CMS Collaboration and Thomas Mc Cauley. "Displays of an event with two jets with transverse momentum of more than 3 TeV as seen in the CMS detector". CMS Collection. 2021. URL: https://cds.cern.ch/record/2775841.
- Sayipjamal Dulat et al. "New parton distribution functions from a global analysis of quantum chromodynamics". In: Phys. Rev. D 93 (2016), p. 033006. DOI: 10.1103/PhysRevD.93.033006. arXiv: 1506.07443 [hep-ph].

 CDCS P. Connor

Acronyms References Visiting card L. A. Harland-Lang et al. "Parton distributions in the LHC era: MMHT 2014 PDFs". In: **Eur. Phys. J. C** 75 (2015), p. 204. DOI: 10.1140/epjc/s10052-015-3397-6. arXiv: 1412.3989 [hep-ph].

References VII

S. Alekhin et al. "Parton distribution functions, α_s , and heavy-quark masses for LHC Run II". In: Phys. Rev. D 96 (2017), p. 014011. DOI: 10.1103/PhysRevD.96.014011. arXiv: 1701.05838 [hep-ph].

Xiaohui Liu, Sven-Olaf Moch, and Felix Ringer. "Phenomenology of single-inclusive jet production with jet radius and threshold resummation". In: Phys. Rev. D 97 (2018), p. 056026. DOI: 10.1103/PhysRevD.97.056026. arXiv: 1801.07284 [hep-ph].

J Currie, E. W. N. Glover, and J Pires. "Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC". In: Phys. Rev. Lett. 118 (2017), p. 072002. DOI: 10.1103/PhysRevLett.118.072002. arXiv: 1611.01460 [hep-ph].

James Currie et al. "Single Jet Inclusive Production for the Individual Jet p_T Scale Choice at the LHC". In: Acta Phys. Polon. B 48 (2017), p. 955. DOI: 10.5506/APhysPolB.48.955. arXiv: 1704.00923 [hep-ph].

Thomas Gehrmann et al. "Jet cross sections and transverse momentum distributions with NNLOJET". In: **PoS** RADCOR2017 (2018). Ed. by Andre Hoang and Carsten Schneider, p. 074. DOI: 10.22323/1.290.0074. arXiv: 1801.06415 [hep-ph].

CDCS P. Connor

Acronyms References Visiting card

Patrick L.S. CONNOR Universität Hamburg https://www.desy.de/~connorpa

Institut für Experimentalphysik

Tel.: +49 40 8998-2617 Geb.: DESY Campus 68/121

Center for Data Computing and natural Sciences Tel.: Geb.: Notkestraße 9

UH 38/29