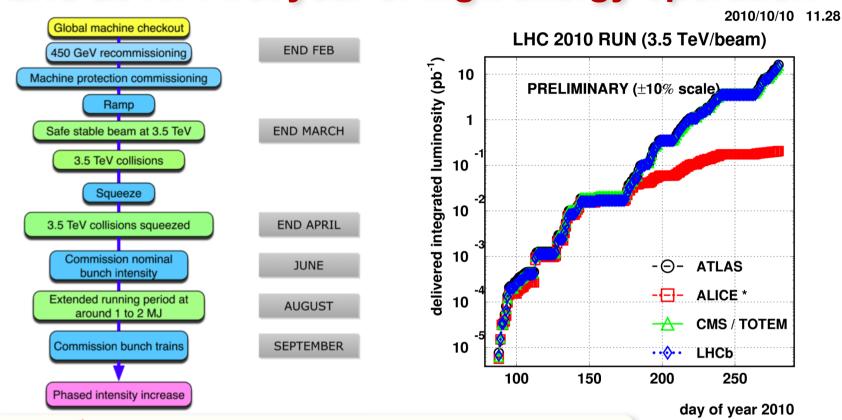


Status of CMS at DESY

María Aldaya for the DESY CMS group

DESY-PRC-70 Open Session, Zeuthen, 14-10-2010

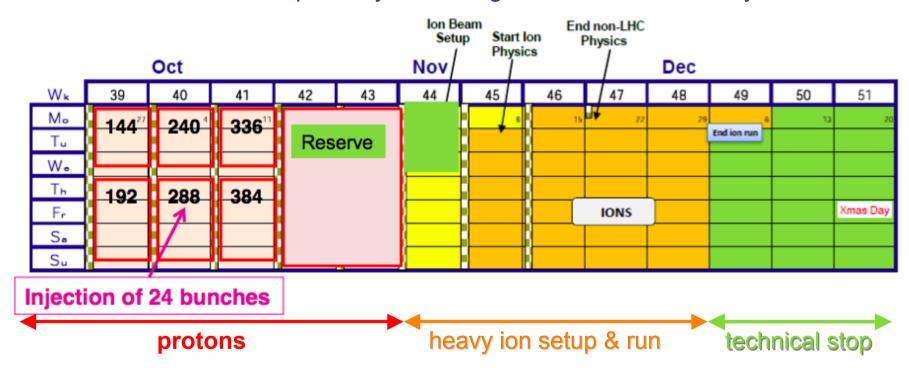

Outline:

LHC Status

CMS Status

CMS DESY Activities

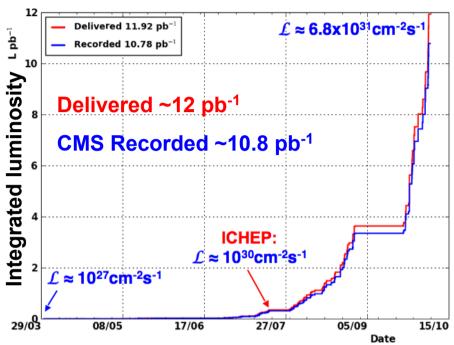
LHC 2010: First year of high energy operation



As of 30 th September	LHC design	now	6th Octobor
Momentum at collision, TeV/c	7	3.5	6 th October:
Luminosity, cm ⁻² s ⁻¹	1.0E+34	3.5E+31	200 bunches/beam
Dipole field at top energy, T	8.33	4.17	(11.2MJ/beam)
Number of bunches, each beam	2808	50> 500	Record luminosity:
Particles / bunch	1.15E+11	1E+11 (up to 1.3E+11)	6.8x10 ³¹ cm ⁻² s ⁻¹
Typical beam size in ring, µm	200 – 300	300-500	
Beam size at IP, μm	17	59	

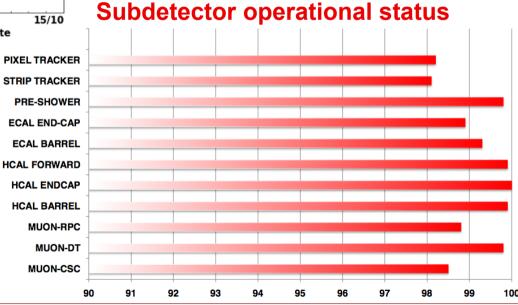
Schedule 2010 / 2011

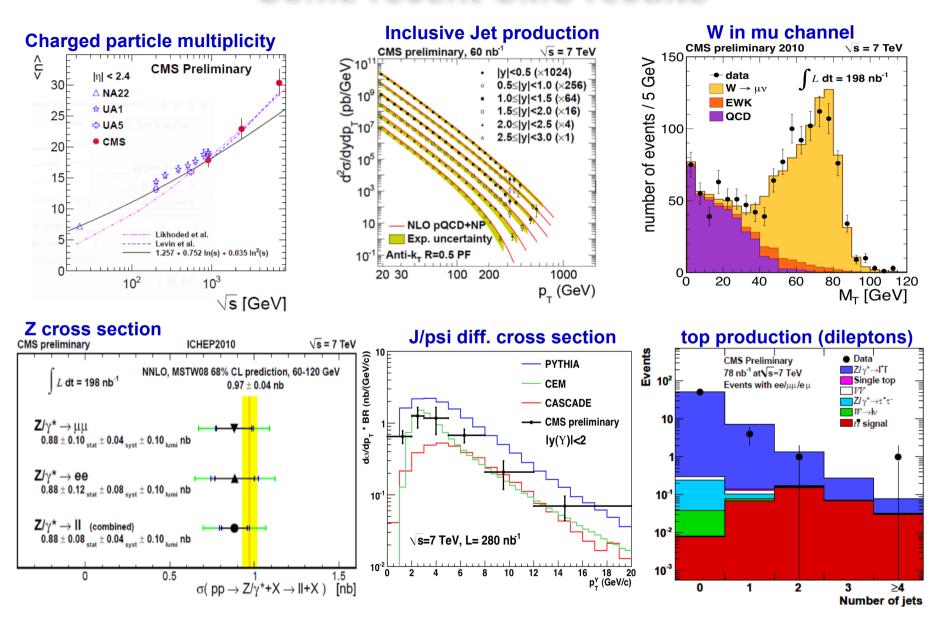
Ambitious schedule for 2010:


increase #bunches, 2 steps every week, to get to $L = 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ by end 2010

Plans for 2011:

- Restart 4th February, 3.5 TeV
- 9 months protons, 4 weeks ions
- Integrated luminosity target driven 1 fb-1


CMS 7 TeV operations since March 30th


CMS data taking efficiency > 90%

Good performance in coping with 4 orders of magnitude increase in instantaneous luminosity \mathcal{L} !

All subdetector components operation at the level > 98%

Some recent CMS results

First physics: CMS publications

CMS published papers and preprints on physics results (since last PRC):

Search for Dijet Resonances in 7 TeV pp Collisions at CMS

Submitted to Phys. Rev. Lett; arXiv:1010.0203

- Observation of Long-Range, Near-Side Angular Correlations in Proton-Proton

 Collisions at the LHC

 J. High Energy Phys. 09 (2010) 091; arXiv:1009.4122
- CMS Tracking Performance Results from Early LHC Operation

Submitted to European Physical Journal C; arXiv:1007.1988

- First Measurement of the Underlying Event Activity at the LHC with $\sqrt{s} = 0.9 \text{ TeV}$ Submitted to European Physical Journal C; arXiv:1006.2083
- Measurement of the charge ratio of atmospheric muons
 with the CMS detector

 Phys. Lett. B 692 (2010) 83-104; arXiv:1005.5332
- •Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at $\sqrt{s} = 7$ TeV Phys. Rev. Lett. 105 (2010) 022002; arXiv:1005.3299
- First Measurement of Bose-Einstein Correlations in proton-proton Collisions at $\sqrt{s} = 0.9$ and 2.36 TeV at the LHC

 Phys. Rev. Lett. 105 (2010) 032001; arXiv:1005.3294

First physics: CMS publications

CMS published papers and preprints on physics results (since last PRC):

Search for Dijet Resonances in 7 TeV pp Collisions at CMS

Submitted to Phys. Rev. Lett; arXiv:1010.0203

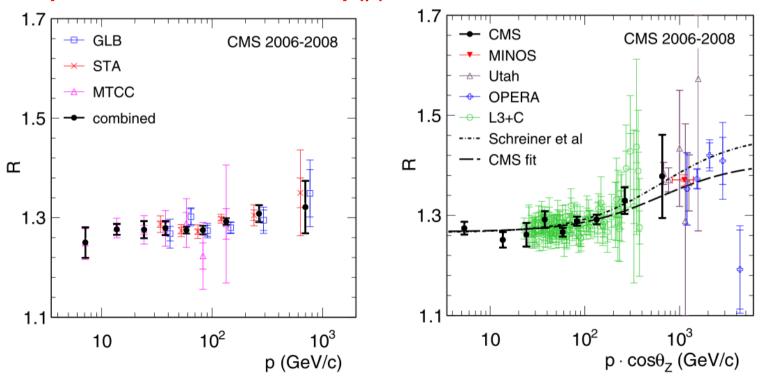
- Observation of Long-Range, Near-Side Angular Correlations in Proton-Proton

 Collisions at the LHC

 J. High Energy Phys. 09 (2010) 091; arXiv:1009.4122
- CMS Tracking Performance Results from Early LHC Operation (*)
 Submitted to European Physical Journal C; arXiv:1007.1988
- First Measurement of the Underlying Event Activity at the LHC with $\sqrt{s} = 0.9 \text{ TeV}$ Submitted to European Physical Journal C; arXiv:1006.2083
- Measurement of the charge ratio of atmospheric muons
 with the CMS detector (*)

 Phys. Lett. B 692 (2010) 83-104; arXiv:1005.5332
- •Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at $\sqrt{s} = 7$ TeV Phys. Rev. Lett. 105 (2010) 022002; arXiv:1005.3299
- First Measurement of Bose-Einstein Correlations in proton-proton Collisions at $\sqrt{s} = 0.9$ and 2.36 TeV at the LHC

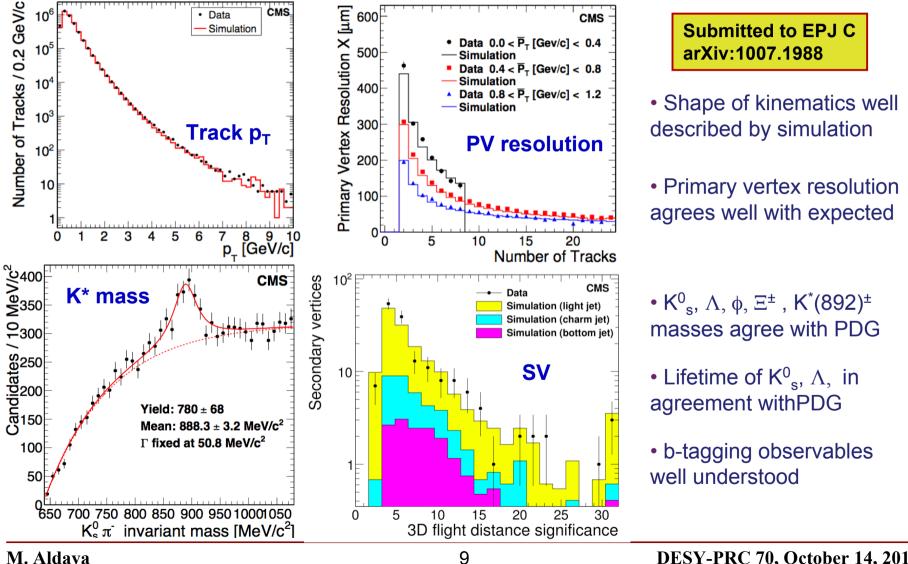
 Phys. Rev. Lett. 105 (2010) 032001; arXiv:1005.3294
- (*) Contributions from DESY


Measurement of the charge ratio of atmospheric muons with the CMS detector

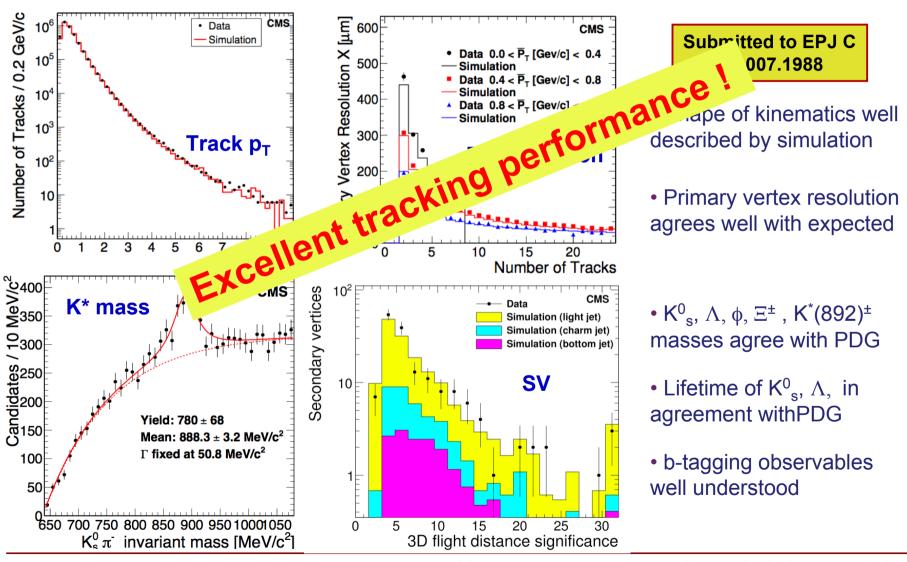
- Measurement of the ratio of positive- to negative-charge muons important for
 - constraining models of cosmic showers

understanding atmospheric neutrinos

Phys.Lett.B 692 (2010) 83-104


■ Most precise measurement for p(µ) < 500 GeV so far !</p>

Good understanding of the muon reconstruction in the full momentum range, the (L1) trigger efficiencies and muon-tracking alignment


CMS Tracking Performance Results from Early LHC Collisions

Reconstructed tracks from the data taken at \sqrt{s} = 900 GeV and 2.36 TeV in Dec 2009

CMS Tracking Performance Results from Early LHC Collisions

Reconstructed tracks from the data taken at \sqrt{s} = 900 GeV and 2.36 TeV in Dec 2009

DESY CMS Physics Landscape

2010 / 2011: Preparation for physics analysis with first collision data

QCD - Forward Physics:

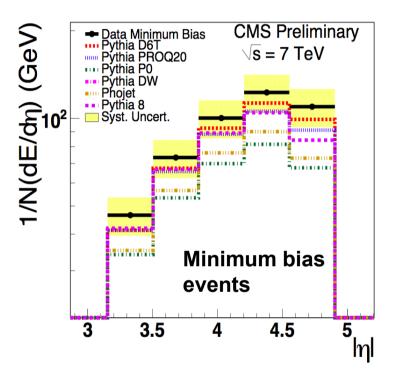
- Multiparton interactions/UE
- QCD at very low x

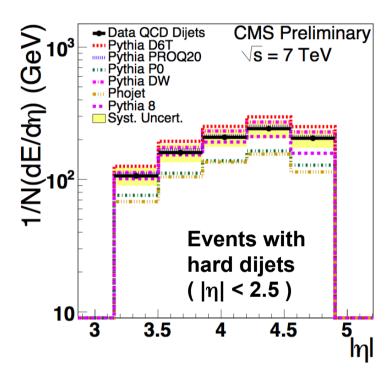
Top Quark Physics:

- top quark total cross-section in ttbar \rightarrow 2W2b \rightarrow 2l (l = μ ,e)
- top quark mass

Higgs Physics:

Analysis of MSSM Higgs:


$$H \rightarrow \tau \tau \rightarrow \mu \mu$$


SUSY Physics:

searches in channels containing leptons (electrons and muons)

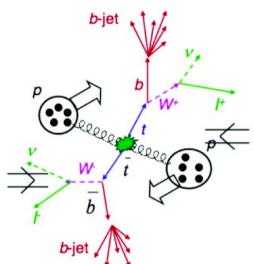
QCD - Forward physics: PAS FWD-10-002

First measurement of energy flow within $3 < |\eta| < 5$ at a pp collider

- Measured forward energy flow significantly different for both event classes
- In minimum bias events, increase in energy flow with increasing center of mass energy not reproduced by MC simulations
- Current MC simulations cannot describe both energy flow and particle spectra
 - → important input for tuning of MC generators

Top quark physics at DESY

Achievements in 2nd half 2010: First analyses with 7 TeV data


Total ttbar cross section measurement in dimuon decay channel:

- Muon trigger efficiencies haven been determined using data-driven "tag & probe" methods at the Z peak
- Developed a robust cut-based event selection
 - → CMS "reference selection" has been reproduced

Data quality and trigger monitoring for top-like dileptonic events:

- First results for data-driven muon trigger efficiency measurements ("tag & probe") in the J/psi-, Y- and Z-mass regions
- First estimation of background events from μ/e events

Top quark physics at DESY

Ongoing developments:

Dileptonic channel

- Data-driven methods to determine & subtract background from QCD and fake muons
- Study the feasibility of measuring the top quark mass using the "Lxy method"

Muon + jets channel

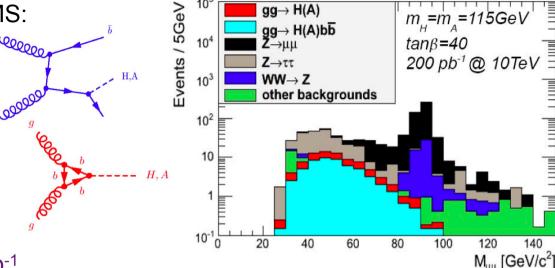
Data-driven calibration tools for b-tagging

Further related studies

- Simulation of b-tagging performance with the Phase1 upgraded pixel detector (see later slides)
- Measurement of Zbb production cross section important background for many physics processes

Goal for 2011:

Measurement of the ttbar cross section in the dileptonic decay channels


Towards MSSM Higgs boson searches

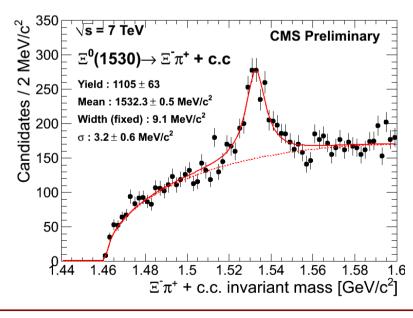
Novel analysis approach in CMS:

$$H(A) \rightarrow \tau \tau \rightarrow \mu \mu + E_T$$

Work in progress:

 $\mbox{{\bf Z}} {\to} \tau \tau {\to} \mu \mu$ - template process for commissioning of MSSM Higgs analysis

Observation possible with 20 pb⁻¹



- Characteristics of the relevant subdetectors
- Performance of tracking (b-tagging)
- Application: strange resonance production

•
$$K^{\pm}(892) \rightarrow K^{0}_{s} + \pi^{\pm}$$

•
$$\Sigma^{\pm}(1385) \rightarrow \Lambda^0 + \pi^{\pm}$$

•
$$\Xi^{0}(1530) \to \Xi^{-} + \pi^{+}$$

Towards SUSY searches at DESY

Ongoing activities and plans for 2011:

- Participation in leptonic "Reference Analyses":
 - Jets + MET + 2 (same-sign) muons (or electrons) small QCD background
 - Jets + MET + 1 muon (or 1 electron)
 relative clean signature
 background: top quark production, QCD events with jets,
 electroweak boson production
 - Jets + MET + 2 (odd-sign) muons (or electrons)
 characteristic invariant mass distribution of the two muons
- Participation in Lepton Commissioning Team of the SUSY group
- Development of offline data quality monitoring (DQM) tools within the SUSY
 Prompt Validation and Physics Commissioning team

16

Development of data-driven estimation of Standard Model backgrounds

CMS operation & development by **DESY**

Alignment:

- Tracker alignment
- Relative global alignment of tracker and muon system
- Alignment software coordination

Data Quality Monitoring:

- Online data taking & offline reconstruction
- MC production & Release Validation
- Data certification

Detectors:

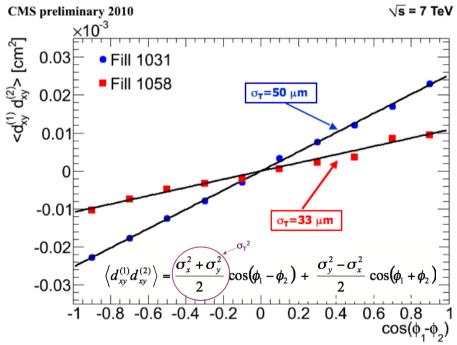
- CASTOR calorimeter
- Fast Beam Conditions Monitor
- High Level Trigger & Data Acquisition

CMS Detector Upgrade:

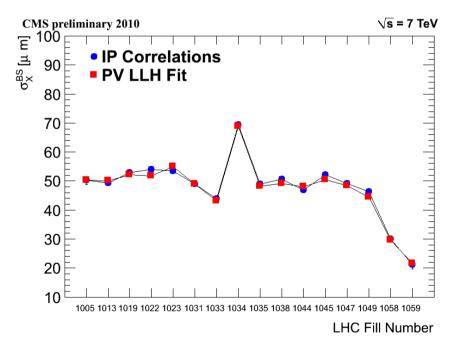
- Barrel pixel module production
- Pixel upgrade simulation studies
- Tracker outer barrel module R&D
- Silicon sensors R&D
- SiPM for HCAL & MTT upgrade

Computing:

- DESY Tier-2 operations and support
- CRAB Server operations
- CMSSW deployment
- Computing integration


Alignment & Calibration Data Quality Monitoring Detectors

Tracker alignment at DESY: PAS TRK-10-005


Measuring beam line width using impact parameter (IP) correlations method

Exploits the correlation between the transverse IP of tracks from the same interaction:

- Orthogonal to conventional method (fit to 3D distribution of primary vertices)
- Does not depend on the PV or IP resolutions → no need for unfolding
- Uses different information → different systematics: important for cross-check

Slope vs $cos(\phi_1 - \phi_2)$ shows different beam line widths for different fills

CMS tracking resolutions well understood

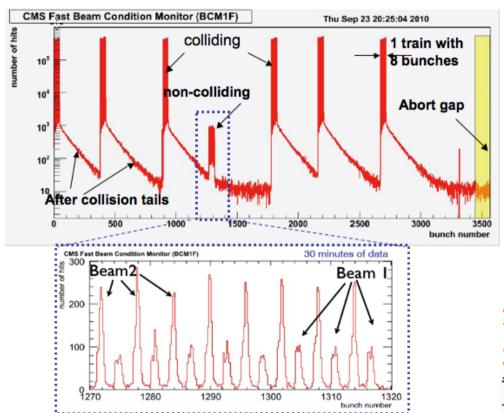
Data Quality Monitoring (DQM)

- The CMS-wide DQM system comprises
 - Online DQM: identify detector performance problems during data taking (P5 shifts)
 - Offline DQM: verify reconstruction & calibration (shifts at CERN, DESY, FNAL)
 - Data certification: creation of CMS-wide certified list of good runs
- All detector and physics objects groups are integrated in the same system
- Same infrastructure regularly operated on data (online, express, prompt, re-reco), MC production, software release validation

Full end-to-end chain in place since LHC startup and working exceedingly well

All CMS analyses rely on the good-run-list from DQM as starting point for data selection

Data Quality Monitoring (DQM)

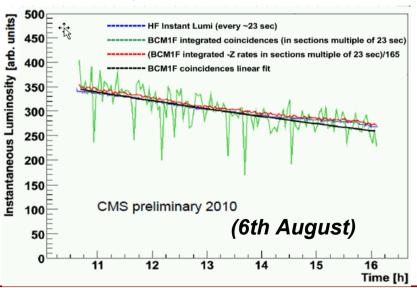

Contribution from DESY (2010):

- Project Coordination: Andreas Meyer (L2) until 31/8/10, now Amita Raval (L2, deputy)
- Offline DQM shifts (daily 13:00-19:00 at DESY CMS Center)
- Current developments:
 - Refinement of online DQM system
 - Retrieval & aggregation of offline histograms (harvesting)
 - Development & subsystem integration of DQM for Monte Carlo simulations
- Operations:

Harvesting of DQM histograms from data reprocessing (Tier-1) and MC production (Tier-2)

Fast Beam Conditions Monitor (BCM1F)

BCM1F: two arrays of 4 diamond sensors at 1.8 m from interaction point


Future plans:

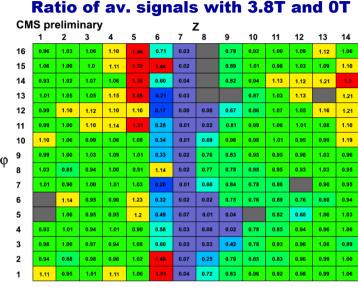
- Upgrades plans for 2015
- LHC demands the use of BCM1F modules to be used for beam diagnostics

Indispensable tool for beam monitoring, providing count rates of beam-halo & collision products

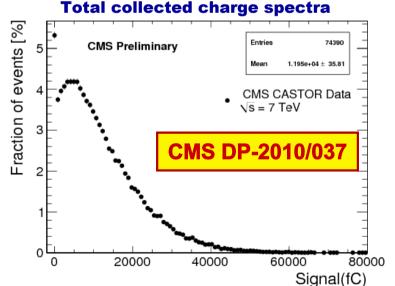
Recent developments:

- Simulations for particle ID in tails
- LUT card added to DAQ to identify hit coincidences in sensors
- → Studying the use of BCM1F for luminosity estimation

CASTOR forward calorimeter


Major milestones:

Upgrade of the slow control and DAQ


"unattended" operation by central CMS shift

Calibration efforts in different directions:

- → esp. for magnetic field effects
- MinBias analysis for \sqrt{s} = 0.9, 2.36, 7 TeV
- Physics based (jet pT-balance, Z→ee, ...)

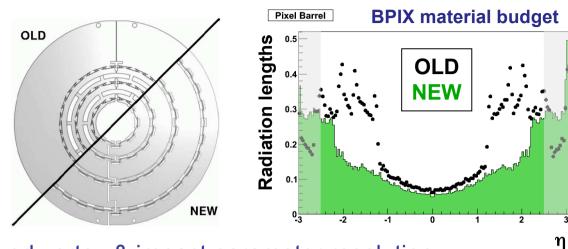
Minimum bias data: Run 133874 (Nominal B-field) / Run 133239 (No B-field

Special CASTOR technical trigger

- ~5 x higher statistics wrt. BCS2
- used in CASTOR calibration runs
- now being improved for physics runs

Heavy ion runs in November

- CASTOR will play a central role
- Monitoring & gain currently being adapted


CMS Upgrade Projects at DESY:

Pixel
Tracker
SiPM for HCAL & MTT

Phase1 pixel upgrade simulation

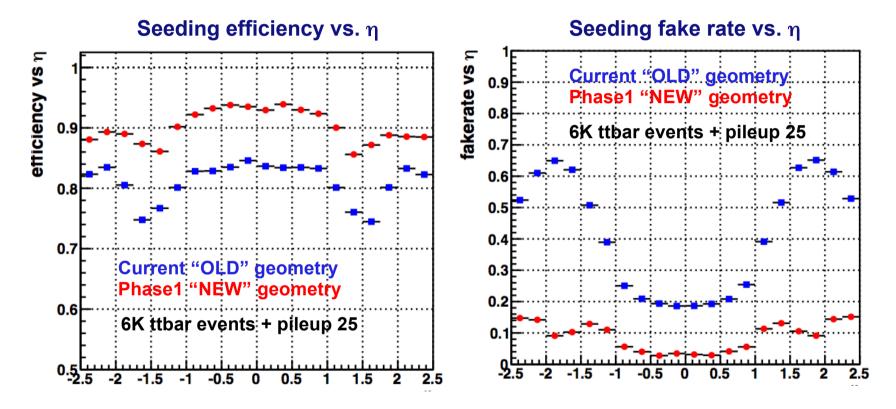
Phase1 pixel upgrade:

- Upgrade to 4 barrel layers / 3 end-cap disks
- Reduced material budget

→ Expect improved vertex & impact parameter resolution

Investigating tracking & b-tagging performance:

- in the High-Level Trigger (pixel-only tracks)
- in the full CMS tracker

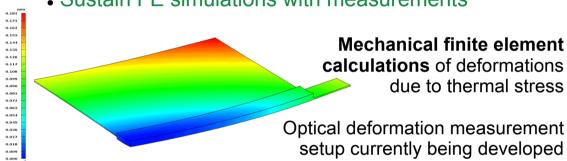

Contributions from DESY:

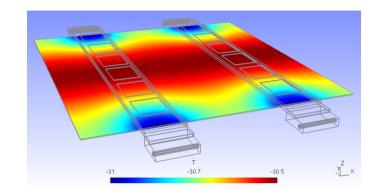
- Provide the tools and tracking algorithms to fully exploit the capabilities of the enhanced geometry (included in "official" CMS software upgrade releases)
- Proving improvements in b-tagging performance in HLT
- Participation in the CMS Upgrade Technical Proposal and Design Report

Phase1 pixel upgrade simulation

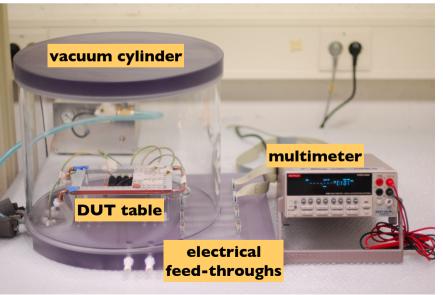
Example of improvement in tracking by new algorithms:

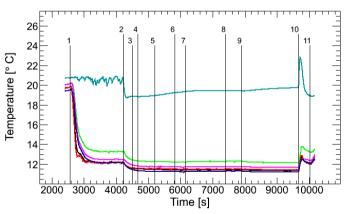
Efficiency and fake rate for the track seeding (first input to track reconstruction)


Significantly improved efficiency and decreased fake rate

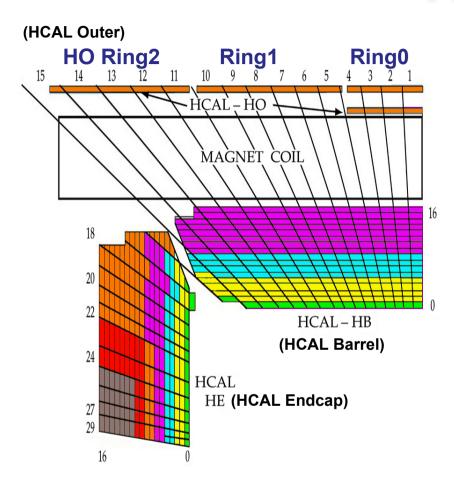

New b-tagging developed, first very encouraging results for HLT

Si-Strip module R&D for Phase2 tracker upgrade


Phase2 CMS tracker upgrade: low temperature operation of sensors and restrictions in material budget will require extremely efficient cooling:


- Optimization of thermal interfaces & junctions
- Study cooling performance of module design options
- Sustain FE simulations with measurements

Thermal finite element calculations for various design options



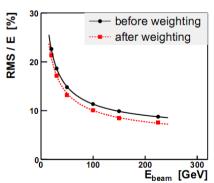
All sensors operational setup being commissioned & calibrated

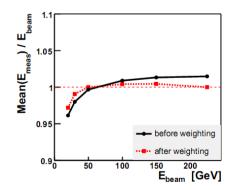
High precision temperature measurement setup Developed for cooling performance studies of test structures & module prototypes

HCAL upgrade project

- Synergy with CALICE & XFEL
- Application for a new Helmholtz-Russia-Joint-Research Group

Replace HPD with SiPM:


- Less sensitive to magnetic stray field
- Higher gain allows for longitudinal segmentation


Goals for ~ 2012:

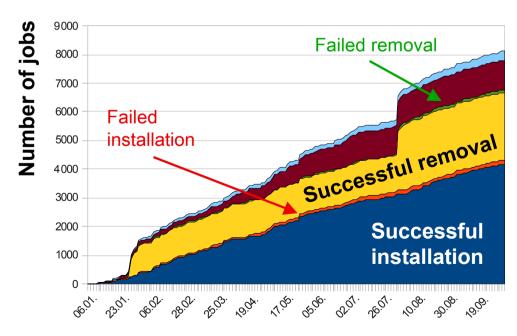
- SiPM for HO Ring0 (in approval procedure)
- HO Ring1,2 already approved & underway

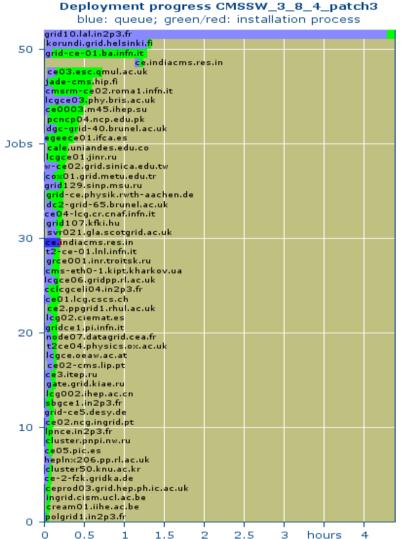
Next goal: 2015/16 (in planning):

- SiPM for HB and HE
- Improvements in readout elec. & trigger

Weighting algorithms for energy reconstruction

CMS Computing at DESY

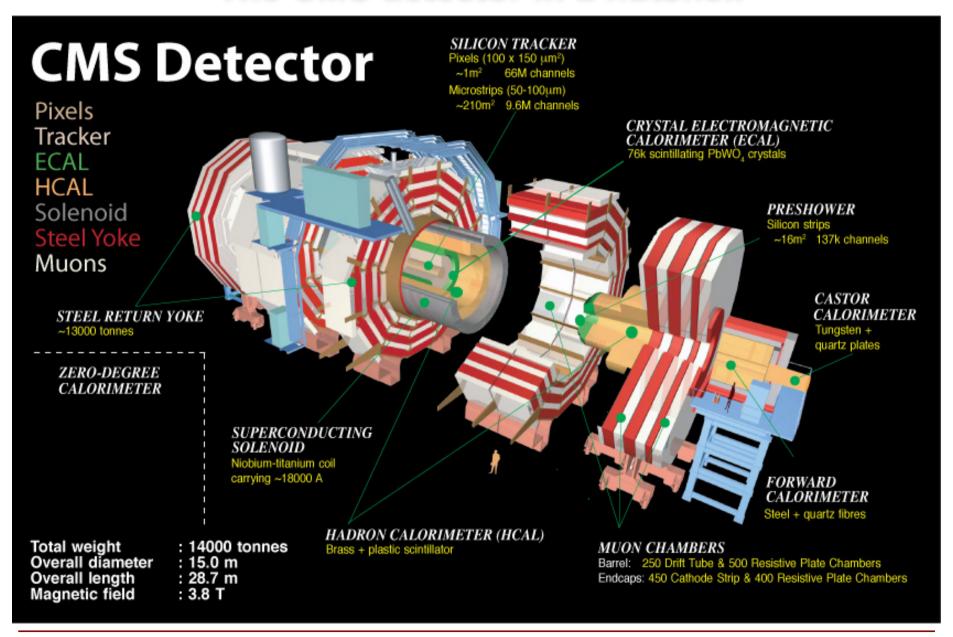

CMS Computing at DESY


- CMS Tier-2 at DESY
 - Reliable computing and storage resource for analysis and MC production
 - Hosts 4 Physics Groups: QCD, Top, Forward, JetMET
 - CMS specific site services in close collaboration with Uni Hamburg
 - > Phedex
 - > Squid cache
 - See presentation by Y. Kemp
- National computing infrastructure for CMS
 - National Analysis Facility (NAF)
 - National Grid resources (beyond WLCG pledges)
 - Available at all German CMS sites RWTH Aachen, DESY/UniHH, KIT
 - > Planning and management effort shared among all German CMS groups

CMS Software deployment

DESY: Coordination of installations at European and Asian CMS sites

- ~ 50 sites, including 6 Tier-1 sites
- Over 50 releases deployed since Jan 2010
 - Several removal campaigns
- Typical deployment cycle
 - A few hours per patch release
 - Less than 24 hour for a full release



Summary

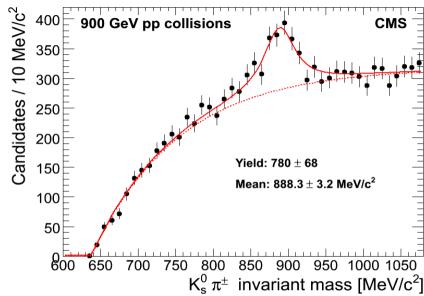
- The LHC is running at \sqrt{s} = 7 TeV and delivers data at rapidly increasing rate!
- The CMS detector is fully operational and its components show excellent performance
- DESY plays an active role in many key areas of CMS:
- → management, operations, physics analysis, detector development & upgrade
- DESY hosts & coordinates several computing resources which are crucial for CMS and particularly for the German CMS community
- CMS is producing and publishing physics results
- → with substantial contributions from DESY
- The DESY CMS group is well prepared for the 2011 high-luminosity data ... and the exciting physics and possible surprises they will reveal in QCD, investigation of the top quark and searches for Higgs bosons and SUSY!

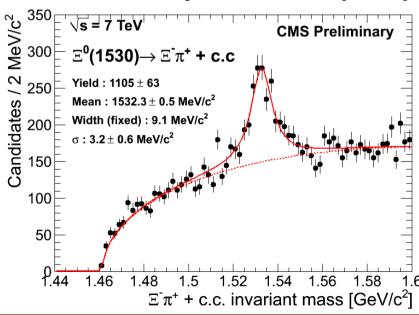
Additional Information

The CMS detector in a nutshell

Strange resonance production at 0.9 & 7 TeV

Studied channels:

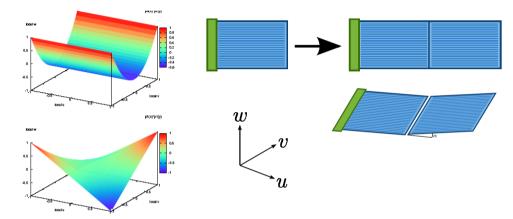

•
$$K^{\pm}(892) \rightarrow K_{s}^{0} + \pi^{\pm}$$

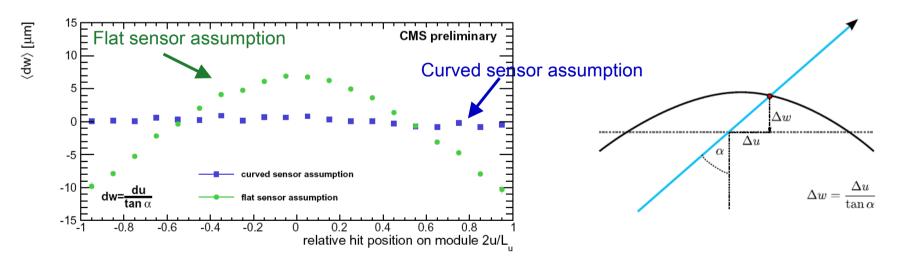

•
$$\Sigma^{\pm}(1385) \rightarrow \Lambda^0 + \pi^{\pm}$$

•
$$\Xi^{0}(1530) \to \Xi^{-} + \pi^{+}$$

Objectives:

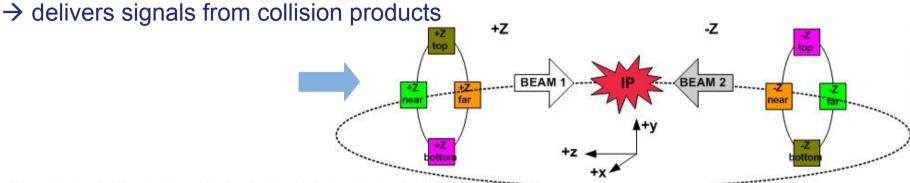
- verification of tracking performance
- provide information on production of strange particles needed for further tuning of various models
- CMS paper on strange resonance production

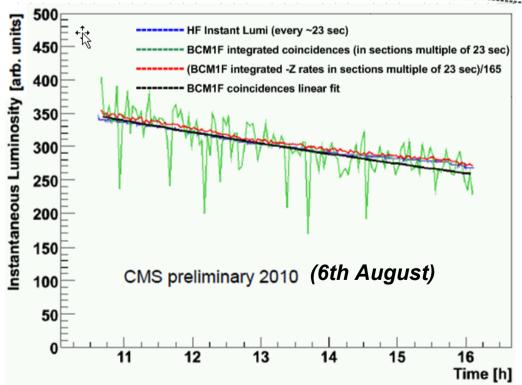



Tracker alignment at DESY

Alignment of kinks & bows from composite and curved tracker silicon sensors

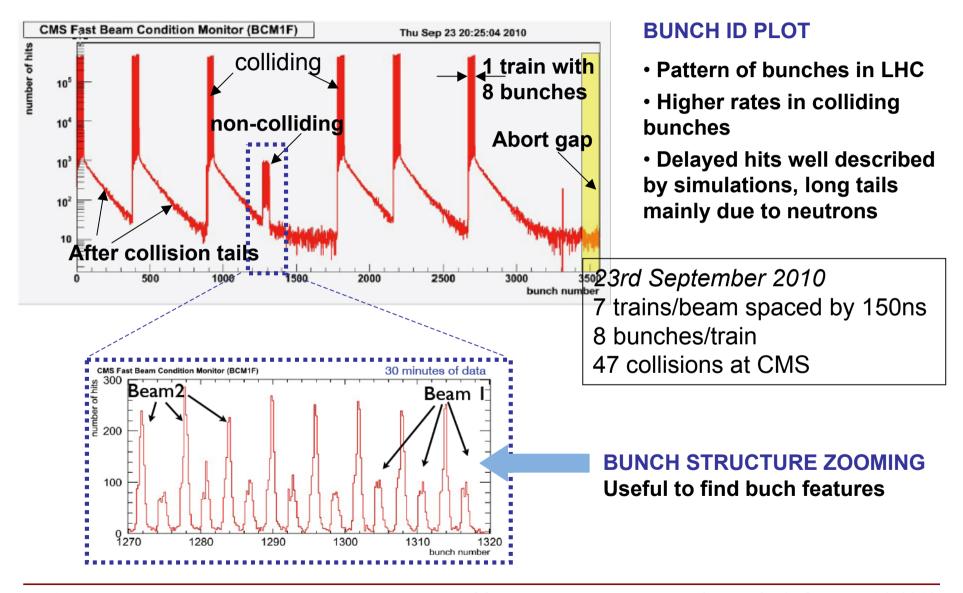
- Curvature of "flat" sensors & kink angle between the 2 parts of composite modules can now be determined using the CMS tracker
- Extended version of Millepede-II (courtesy of Helmholtz Alliance Analysis Centre) applied to data




Correct for these effects to avoid hit bias depending on slope and position of the track

BCM1F: Luminosity estimation

LUT detects coincidences (logic AND) in pairs of back-to-back sensors



Comparison of coincidences rates with instant luminosity from HF:

- Good correlation on coincidences and raw rates
- Further studies still ongoing

BCM1F: Examples of beam monitoring

