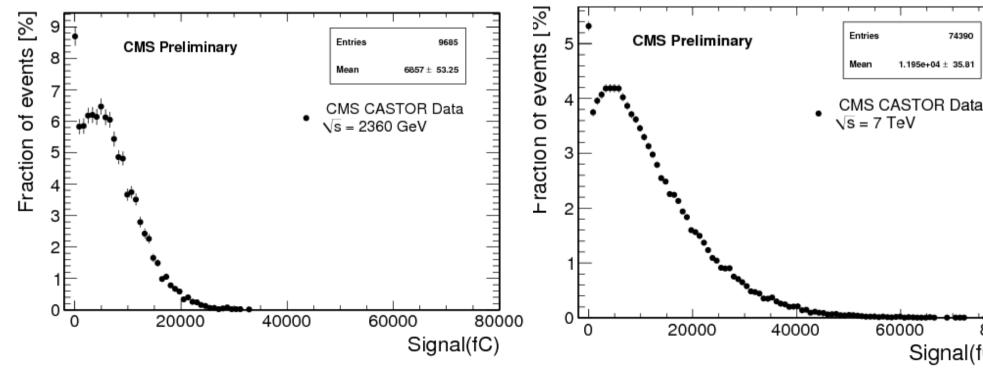
CASTOR performance and development status

- \rightarrow minimum bias analysis for \sqrt{s} = 0.9, 2.36 and 7 TeV
- → inter- and absolute calibration, effects of magnetic field:
 - halo muon castor calibration runs during injection+rump (part of castor acceptance)
 - minimum bias analysis
 - physics based (...)
- → castor technical trigger L1Tech_CASTOR_HaloMuon
 - ~5 times higher muon statistics compared to BSC2 trigger for the castor calibration runs
 - adaptation for physics runs is ongoing
- → work on DCS/DAQ resulted in
 - castor unattended operation
 - deeper integration in HCAL

minimum bias analysis

for $\sqrt{s} = 0.9$, 2.36 and 7 TeV

Total charge (modules 1-5) without corrections

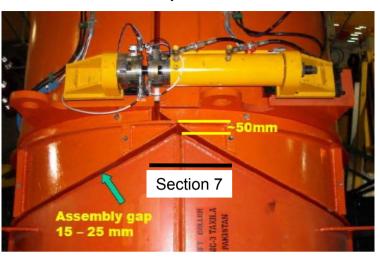

74390

80000

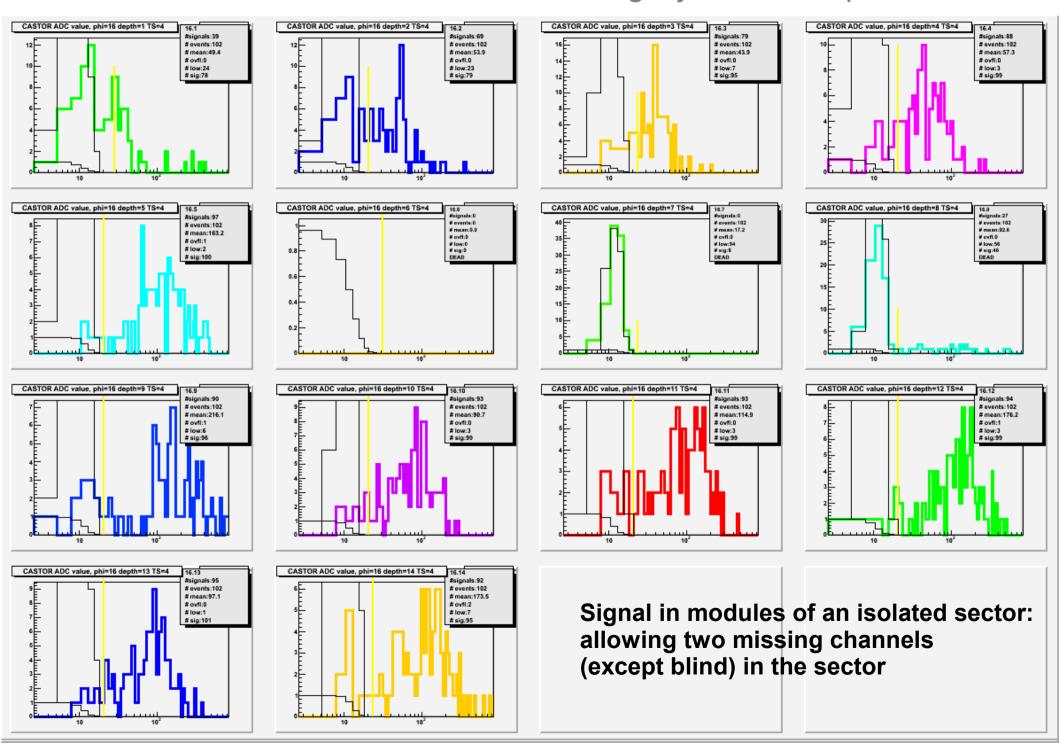
Signal(fC)

1.195e+04 ± 35.81

60000

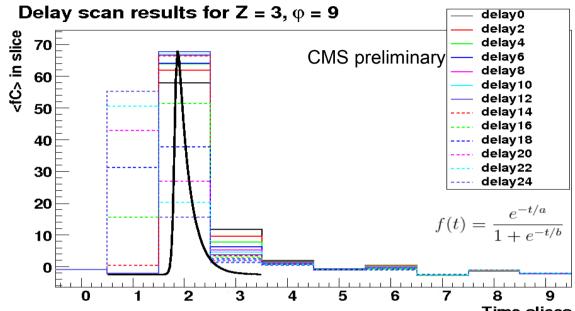

→ minimum bias analysis 7TeV magnetic field influence

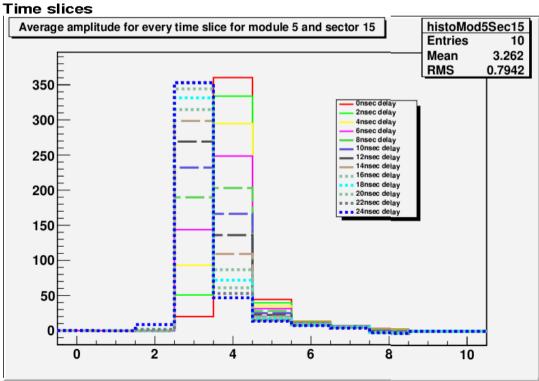
ratio of the average signals under 3.8T and 0T


	CMS preliminary Z														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	16	0.96	1.03	1.06	1.10	1.44	0.71	0.03		0.79	0.92	1.00	1.09	1.12	1.06
	15	1.06	1.00	1.0	1.11	1.32	1.44	0.02		0.89	1.01	0.98	1.03	1.09	1.10
	14	0.93	1.02	1.07	1.06	1.35	0.60	0.04		0.82	0.94	1.13	1.12	1.21	1.3
	13	1.01	1.05	1.05	1.15	1.48	0.21	0.03			0.87	1.03	1.13		1.21
	12	0.99	1.10	1.12	1.10	1.10	0.17	0.00	0.00	0.67	0.86	1.07	1.05	1.16	1.21
	11	0.99	1.00	1.10	1.14	1.31	0.28	0.01	0.02	0.81	0.99	1.06	1.01	1.08	1.10
	10	1.10	1.06	0.99	1.06	1.08	0.34	0.01	0.69	0.98	0.98	1.01	0.95	0.99	1.19
)	9	0.99	1.00	1.03	1.09	1.01	0.33	0.02	0.76	0.83	0.95	0.95	0.98	1.03	0.96
,	8	1.03	0.85	0.94	1.00	0.91	1.14	0.02	0.77	0.78	0.88	0.95	0.93	1.03	0.95
	7	1.01	0.90	1.00	1.01	1.03	0.20	0.01	0.60	0.84	0.78	0.88		0.90	0.95
	6		1.14	0.95	0.90	1.23	0.32	0.02	0.02	0.75	0.76	0.89	0.76	0.80	0.94
	5		1.00	0.95	0.95	1.2	0.49	0.07	0.01	0.04		0.82	0.68	1.06	1.03
	4	0.93	1.01	0.94	1.01	0.90	0.58	0.03	0.00	0.02	0.78	0.85	0.94	0.96	1.06
	3	0.98	1.00	0.97	0.94	1.08	0.60	0.03	0.03	0.42	0.78	0.93	0.96	1.08	0.89
	2	0.94	0.88	0.98	0.96	1.02	1.48	0.07	0.25	0.79	0.85	0.83	0.96	0.99	1.00
	1	1.11	0.95	1.01	1.11	1.06	1.91	0.04	0.72	0.83	0.96	0.92	0.98	0.99	1.06

Minimum bias data: Run 133874 (Nominal B-field) / Run 133239 (No B-field)

Top view


→ halo muon castor calibration runs during injection+rump



- → castor technical trigger L1Tech_CASTOR_HaloMuon:
 - castor calibration runs results as input for the trigger development
 - min 3 module through castor depth in an isolated sector
 - full castor acceptance
 - more strong selection (more pure events)
 - in total ~5 times higher muon rates compared to BSC2 trigger
 - regullar castor calibration runs also during MD: GT=*CastorZdcBsc2
 - adaptation for physics runs is ongoing

→ recent update on the performance studies:

castor timing: delay scan results

