Cosmic Rays around the Knee - Composition and Latest Results

Donghwa Kang Karlsruhe Institute of Technology

HONEST, November 29 – December 1, 2022, Online

Contents

- Introduction
- Selected science results on galactic cosmic rays:
 - all-particle energy spectrum
 - elemental composition
 - anisotropy of arrival direction
- Extensive Air Shower (EAS) measurements of PeV to EeV:
 - knee and transition region: KASCADE, KASCADE-Grande, Tunka,
 IceTop/IceCube
 - LHAASO, HAWC: primarily gamma-ray experiments, but also measure CRs at lower energies
 - TA Low Energy Extension: TALE
 - Lower energy extension of the **Pierre Auger** Observatory

Galactic Cosmic Rays

Acceleration of cosmic rays in supernova remnants

p.

Propagation through galaxy (B=3µG)

> Direct or indirect measurement

Acceleriation and magnetic confinement: $E_{max} \sim R \times B \times Z$

Are these feature caused by the CR sources, or are they an effect of propagation?

Cosmic Rays at the Knee

Rigidity dependent cut-off: $E_{max} \sim Z$

- Acceleration/propagation depends on B: $r_{gyro} = R / B$ with rigidity of R = E / Ze $\rightarrow E_c(Z) \sim Z R_c$
- Shock acceleration ($r_{SNR} \sim parsec$): $E_{max} \sim Z \times 10^{15} \text{ eV}$, $1 \le Z \le 26$ (p to Fe)
- Slope change should occur within factor of 30 in energy

Mass dependent cut-off: $E_{max} \sim A$

- Interaction with background particles (photons, neutrinos)
- New particle physics in the atmosphere?

Present Experiments $10^{16} - 10^{18} \text{ eV}$

Tunka in Siberia

Auger in Argentina

KArlsruhe Shower Core and Array DEtector + Grande

Nucl. Instr. and Meth. A620 (2010) 202

- 10 PeV 1 EeV
- 0.5 km²
- 37 stations (each 10 m²)

Successfully completed data acquisition at the end of 2013

Data from more than 20 years of measurements are now available for public usage

- 100TeV 80PeV
- 252 scintillation detector stations
- Large number of observables

9

KASCADE: Energy Spectra of Single Mass Groups

<u>Searched:</u> Energy and Mass of the cosmic ray particles

<u>Given:</u> $\rm N_e$ and $\rm N_{\mu}$ for each single event \rightarrow solve the inverse problem

$$\frac{dJ}{d \lg N_e d \lg N_{\mu}^{tr}} = \sum_{A} \int_{-\infty}^{+\infty} \frac{dJ_A}{d \lg E} \left(p_A (\lg N_e, \lg N_{\mu}^{tr} | \lg E) d \lg E \right)$$

- Kernel function obtained by Monte Carlo simulations (CORSIKA)
- Contains: shower fluctuations, efficiencies, reconstruction resolution

- Knee caused by light primaries at ~ $3 \cdot 10^{15}$ eV (He dominant)
- Relative abundancies depend strongly on high energy interaction model

KASCADE-Grande: Energy and Elemental Composition

- 2-dim. shower size distribution → determination of primary energy
- Separation in *electron-rich* and *electron-poor* events

$$log_{10}(E/GeV) = [a_{\rm H} + (a_{\rm Fe} - a_{\rm H}) \cdot k] \cdot log_{10}(N_{\rm ch}) + b_{\rm H} + (b_{\rm Fe} - b_{\rm H}) \cdot k$$
$$k = \frac{(log_{10}(N_{\rm ch}/N_{\mu}) - log_{10}(N_{\rm ch}/N_{\mu})_{\rm H})}{(log_{10}(N_{\rm ch}/N_{\mu})_{\rm Fe} - log_{10}(N_{\rm ch}/N_{\mu})_{\rm H})}$$

- Spectra of individual mass groups
- Steepening close to 10^{17} eV (2.1 σ) in all-particle spectrum
- Steepening due to heavy primaries (3.5σ)
- Hardening at $10^{17.08}$ eV (5.8 σ) in light spectrum: slope change from γ = -3.25 to γ = -2.79
- Mixed composition for 10^{15} to ~ 10^{18} eV

KASCADE-Grande: Model Dependence

- Testing hadronic interaction models based on shower size
- Structures of all-particle, heavy and light spectra similar → knee by heavy component; hardening by light component
- Sibyll 2.3d: lowest flux of heavy primaries of all models, smooth change of the spectral slope
- Relative abundances different for different high-energy hadronic interaction models
- Estimation of systematic uncertainties is in progress (expected to be \sim 20%)

PoS(ICRC2021)313, Work in progress

KASCADE-Grande: Combined Analysis

- For KASCADE: additional stations at larger distances → higher energies
- For Grande: additional 252 stations → higher accuracy

- Light primary interactions okay?
- Heavy primary interactions show differences
 Muon component not sufficiently described (Distance from shower core covered by muon detectors limited)

 $E \,[\mathrm{eV}]$

KASCADE-Grande: Muon Contnet

- None of the high-energy interaction models is able to describe consistently the total muon number (Nµ) of EAS measured by KASCADE-Grande at different zenith angles and energies
- Predictions of EPOS-LHC, Sibyll 2.3 and Sibyll 2.3c on Nµ for primary energies between 100PeV and 1EeV are above the KASCADE-Grande data for vertical showers
- Better agreement for inclined EAS close to 40°
- For vertical showers, hadronic interaction models seem to produce more muons
- Observed anomalies could imply that the energy spectrum of muons from real EAS at production site for a given primary energy is higher than the predicted models

PoS(ICRC2021)376, Work in progress

IceTop/IceCube at the South Pole

- Cosmic ray energies from 1 PeV to 1 EeV
- 2835 m a.s.l. 680 g/cm²
- 81 stations with 2 tanks each (2 DOMs per tank)
- Angular resolution $\sim 1^{\circ}$
- Timing resolution 3ns
- Energy resolution 0.1 in log₁₀(E/GeV)

Cosmic Ray Physics

A three-dimensional cosmic ray detector:

IceTop 1 km² surface air shower array

- Cosmic ray energy and direction
- Measure electromagnetic and low energy muon components of air shower $(E_{\mu} \sim 1 \text{ GeV}, \text{ GeV muons})$

IceCube 1 km³ in-ice array

- Measure high energy muon component of air shower

 $(E_{\mu} > 400 \text{ GeV}, \text{TeV muons})$

- Track/bundle reconstruction
- Deposited energy along the track dE/dX

Energy Spectrum (IceTop-alone)

- Lateral Distribution Function (LDF): $S(r) = S_{125} \cdot \left(\frac{r}{125 \text{ m}}\right)^{-\beta - \kappa \cdot \log(r/125 \text{ m})}$
- IceTop energy proxy S₁₂₅ in Vertical Equivalent Muons (VEM)
- Nearly composition independent
- Energy calibration based on MC with Sibyll 2.1 and H4a
- Snow depth taken into account
- Quality cuts and full efficiency

- 3 years of data (May 2010 to June 2013)
- About $5 \cdot 10^7$ selected events
- Dataset divided into individual years shows strong agreement
- Systematic uncertainties ~ 10%

Low Energy Spectrum (IceTop-alone)

- Latest results: Extension to low energies
 - Lower threshold by using IceTop infill area (250 TeV 10 PeV)
 - LDF fit impracticable \rightarrow Random Forest (RF) regressions for shower reconstruction
 - Connecting to direct measurements, overlap with HAWC
 - Overlapping region with 3-year IceTop result \rightarrow Knee structure visible
 - Large systematic uncertainties due to composition, unfolding, atmosphere

Pure Protons, cos0>0.95 3.5 PRD100(2019)082002 10⁶ 2.5 10⁵ log₁₀(S125/VEM) 10⁴ 10³ 0.5 10² 10 9.5 6.5 7.5 8.5 9 log (E/GeV)

Coincident Analysis: Spectrum and Composition

High-energy muons (>400 GeV):

Electromagnetic

S₁₂₅

•

component of shower:

independent

IceTop energy proxy

Nearly composition

- Energy loss (dE/dX) at fixed slant depth (X=1500m) in the glacial ice
- Strong composition sensitivity

PRD100(2019)082002

Spectrum and Composition

- Same dataset as IceTop-alone analysis
- Agreement with IceTop-alone spectrum

.

-

Coincidence requirement gives composition analysis fewer events and smaller energy range than IceTop-alone analysis

- Mean log mass <InA> derived
 from the individual fractions
 which best fit the NN mass output
- Combined systematic uncertainties of the IceTop and inice detectors for coincident analysis:
- Energy scale ~ 3%
- In-ice light yield $\sim 10\%$
- Snow accumulation \sim \pm 2m

- Each of the four
 individual fractions from
 the NN mass output is
 translated into an
 individual spectrum
- Composition becomes heavier with increasing energy up to 10⁸ GeV
- Agreement with models within statistical and systematic uncertainty

PRD100(2019)082002

- Comparison of the all-particle and composition spectra of the four elemental groups H, He, O, and Fe based on Sibyll 2.1
- Individual elemental fluxes across a wider range in energy than any previous experiment
- The knee energy increasing as mass increases
- Differences in how different experiments handle the intermediate elements may lead to some systematic differences in flux measurements

PRD100(2019)082002

TA Low Energy Extension (TALE)

- 10 new telescopes to look higher in the sky (31-59°) to see shower development to much lower energies
- Graded infill surface detector array more densely packed surface detectors (lower energy threshold)

TALE: Energy Spectrum and Mass Composition

- Updated cosmic ray energy spectrum measured by TALE FD using the mass composition data set
- Broken power-law filt to the cosmic-ray energy spectrum
- Two features: a low energy ankle at $10^{16.22}$ eV and a second knee at $10^{17.04}$ eV

- Composition is getting heavier, followed by a change at an energy of $\sim 10^{17.04}\,{\rm eV}$
- It shows a light composition of mostly protons and helium at the lower energies, becoming more mixed near 10^{17.04} eV

The Pierre Auger Observatory

Fluorescence Detector (FD) Detection of fluorescence emitted in atmosphere by CR shower

Detection of secondary particles on ground Surface detector

- 1500 m array: 1600 detectors, 3000 km², 1500m grid, E > 2.5 EeV
- 750 m array: 61 detectors, 24 km², 750m grid, E > 0.1 EeV → Low energy extension

Fluorescense detector

- 24 telescopes: 4 buildings, Elevation up to 30°, E > 1 EeV
- 3 additional telescopes (HEAT), Elevation 30-60°, E > 0.1 EeV

AERA

 153 radio antennas: 17 km², 30-80 MHz, E > 0.1EeV

Auger: Energy Spectrum and Mass Composition

Low-energy showers with FD

- Large Cherenkov light fraction
- Profile-constrained geometry fit
- Energy scale uncertainty 15% for Cherenkov

- Mean of the shower maxima indicate a composition becoming lighter up to $\sim 10^{18.3}~{\rm eV}$
- Transition from light to heavier primaries above $\sim 10^{18.3} \text{ eV}$
- Mass composition below 0.1 EeV to be studied
- TALE bias not fully known
- Tunka-133 biases and systematics not fully known

Cosmic Ray Anisotropy

HAWC (2013-present)

Tibet-ASγ (1997-2009) ARGO-YBJ (2007-2015)

٠

Theoretical modes predict an anisotropy in the distribution of arrival directions of cosmic rays that results from distribution of sources in the Galaxy and diffusive propagation of these particles

- Anisotropy in the arrival directions of cosmic rays has been observed by a number of underground and surface detectors
- Total energy range covered: $\sim 10~\text{GeV}$ to $\sim 10~\text{EeV}$
- Large-scale structure: 10⁻³ relative intensity
- Small-scale structure: 10⁻⁴ relative intensity with angular size of 10° – 30°

ESA-TOP

KASCADE

IceCube/IceTop (2007-present)

IceCube Cosmic Ray Anisotropy (10 TeV – 5 PeV) Energy dependence in southern hemisphere

• Dominant dipole at large scale (10⁻³)

IceCube, APJ 826 (2016) IceCube, APJ 765 (2013)

• Significant small scale structure (10⁻⁴)

- Cosmic ray anisotropy depends on primary energy
- Large scale changes structure above 100 TeV
- Magnetic effects at larger distances with increasing energy
- Note: cosmic ray mass composition changes as well vs. energy

IceCube/HAWC All-Sky Anisotropy at 10 TeV

Joint analysis of data from IceCube and HAWC: First all-sky cosmic-ray data set at 10 TeV

- Relative intensity maps at 10 TeV
- Decomposition of relative intensity into spherical harmonics → angular power spectrum
- Individual measurements show differences due to partial sky coverage
- All-sky measurement removes these biases of the power spectrum
- Noise level dominated by limited statistics for HAWC

IceCube/HAWC All-Sky Anisotropy at 10 TeV

- Dipole phase: $\alpha = (38.4 \pm 0.3)^{\circ}$
- Dipole amplitude: $A = (1.17 \pm 0.01) \cdot 10^{-3}$
- Systematic uncertainties: $\Delta \alpha \sim 2.6^{\circ}$, $\Delta A \sim 0.006 \cdot 10^{-3}$
- Phase shift of dipole around 150 TeV
- Turning point of amplitude at ~10 TeV (transition heliosphere – interstellar magnetic field?)
- Details of effects of magnetic fields need allsky analyses

Future Projects and Upgrades

- Increasing overlap with direct measurements from TeV to PeV, e.g. DAMPE, NUCLEON
 - It will help to understand systematic uncertainties in interpretation of measurements of air-shower array
- AugerPrime: Upgrade of the Pierre Auger Observatory
 - Improve quality of surface array with scintillators and radio antennas, underground muon detectors, better electronics
 - Enables event-by-event mass discrimination
- Telescope Array: Upgrades
 - Lower energies (E < 10^{15.5} eV): TALE SD array complementing NICHE and FD
- IceTop hybrid surface detector enhancement

IceTop: Hybrid Surface Detector Enhancement

4 pairs of scintillation detectors + 3 antennas

Complete prototype station since 2020

Science goals:

- Improve systematics due to snow coverage
- Improve cosmic ray veto for neutrino detection
- Improve mass composition measurements
- Composition dependent anisotropy studies
- Improve PeV gamma ray search
- Validate hadronic interaction models

A multi-detector IceTop enhancement by adding to IceTop Cherenkov tanks:

- Scintillation detector panels
- Radio antennas

Concluding Comments

- Sources of the most energetic galactic and extragalactic cosmic rays still unknown, however, experimental data in the knee region mostly consistent within uncertainties: Mass composition, Energy spectrum, Anisotropy, ...
- Results sometimes limited by statistics, but often limited by accuracy: Hadronic interaction models and systematic uncertainties
- Bright future with detector upgrades for multi-hybrid measurements!