Diffuse emission an experimental overview from GeV to PeV energies

Giada Peron

CNRS, Lab. Astroparticule et Cosmologie (APC), Paris, France

Diffuse emission = everything that is not a resolved/discrete source

[Fermi-LAT standard Galactic diffuse background @ 1 GeV]

[Unresolved source contribution calculated from Vecchiotti+2022]

Can be used as a source to probe CR far from sources

Diffuse emission

Target column density

$$F_{\gamma}^{pp} = \xi_N \int n_H d\Omega \int dE_p \frac{d\sigma}{dE_{\gamma}} J(E_p)$$

Diffuse emission

Target column density

 $F_{\gamma}^{pp}=\xi_N \int n_H d\Omega \int dE_p rac{d\sigma}{dE_{\gamma}} J(E_p)$

Gamma-ray sky: GeV vs. TeV and PeV

Physical: steep emission, peaks at GeV **Technical:** small FoV (IACTs), background rejection

Analysis technique: GeV vs. TeV

@ GeV energies

TEMPLATE FITTING

Galactic diffuse emission:

- Pion decay
- Inverse Compton
- Bremsstrahlung

Extragalactic isotropic emission

• Contributed by extragalactic sources;

Discrete sources

• e.g. 4FGL catalog;

Giada Peron – HONEST2 workshop – 29.11.2022

@ TeV energies

ON-OFF ANALYSIS

Background is evaluated in a region around the source Less sensitive to low surface brightness sources

TEMPLATE FITTING

Now used also at VHE (e.g. gammapy) More sensitive to low surface brightness sources

Mohrmann+2019

$$F_{\gamma}^{pp}=\xi_N (n_H d\Omega) \int dE_p \, rac{d\sigma}{dE_{\gamma}} J(E_p)$$

Molecular Clouds

Targets for gamma-ray production

Diffuse gas

Map derived from Dame et al. 2000

v [km s⁻¹]

Giada Peron – HONEST2 workshop – 29.11.2022

Gamma-rays from diffuse gas @ GeV energies

Enhancement and hardening towards the GC

- is this a global effect? (e.g. due to propagation)
- is this a local effect? (e.g. due to sources)
- is the contamination of unresolved sources?

-Emission extracted in galactocentric rings of gas

- Template based on HI and CO lines emission

Gamma-rays from molecular clouds[@] GeV energies

Several locations share the same value as the local emission

The contribution of unresolved sources

The contribution of unresolved sources

Diffuse emission at > TeV energies

As a source

Clarify the nature of the enhancement seen at GeV

Probe the CR far from Earth up to the knee region

As a background

Cannot be avoided for large FoV and sensitive instruments:

LHAASO, CTA, SWGO...

TeV Gamma rays from diffuse: observations

@ TeV energies

Flux is extracted from source-free regions

Nayerhoda+2021 for the HAWC Collaboration

LHAASO Collaboration @ICRC2021

Gamma rays from diffuse

Spatial dependent diffusion leads to saturation of the data without unresolved sources which are expected to contribute ~60%

Cataldo+2019 and 2020

Gamma rays from diffuse

@ sub-PeV energies

Amenomori et al. 2021 for the TIBET collaboration

Gamma rays from diffuse: different interpretations

Giada Peron – HONEST2 workshop – 29.11.2022

Giada Peron – HONEST2 workshop – 29.11.2022

Gamma rays from GMCs

Gamma rays from GMCs

@ TeV energies

Giada Peron – HONEST2 workshop – 29.11.2022

The prospects for the future

Summary

- Diffuse emission is an important component that can be used as a **source** to probe CRs in the Galaxy and must be used as a **background** for the detection of discrete sources;
- The contribution of **unresolved sources** cannot be ignored and it increases with energy;
- Molecules clouds are localized enhancement of gas density that can serve as targets to constrain the CR density point by point;
- LHAASO, CTA and SWGO have large chances for detection of diffuse emission and molecular clouds at very high energies;
- **Template fitting** analysis is more sensitive to low brightness sources and is now possible also at VHE energy.