Electroweak corrections to gauge boson production at large transverse momentum

work in collaboration with J. H. Kühn, S. Pozzorini and M. Schulze

Phys. Lett. B 609 (2005) 277

Nucl. Phys. B727 (2005) 368

JHEP 0603 (2006) 059

hep-ph/0703283

Overview

- Introduction: why are the electroweak corrections important?
- Theoretical status
- $\mathcal{O}(\alpha)$ corrections to gauge boson production
 - What is calculated?
 - Results
- Impact of the EW corrections on transverse momentum distributions at the LHC

Simple expectation

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

Simple expectation

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

However

 \rightarrow collinear single logarithms: $\alpha \log \left(\frac{\hat{s}}{M^2}\right)$ NLL

Simple expectation

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

However

$$ightharpoonup
ightharpoonup collinear single logarithms: $lpha \log\left(rac{\hat{s}}{M^2}
ight)$ NLL$$

$$\hat{s} \gg M_W^2$$
 (accessible at the LHC!)

Sudakov logs dominant

Simple expectation

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

However

$$ightharpoonup \sim$$
 collinear single logarithms: $\alpha \log \left(\frac{\hat{s}}{M^2}\right)$

$$\hat{s} \gg M_W^2$$
 (accessible at the LHC!)

- Sudakov logs dominant
- Typically at $\hat{s} \sim 1$ TeV, $\mathcal{O}(10\%) \rightarrow \mathsf{NLO} \; \mathsf{EW} \sim \mathsf{NLO} \; \mathsf{QCD}$

NLL

Simple expectation

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

However

$$\hat{s} \gg M_W^2$$
 (accessible at the LHC!)

- Sudakov logs dominant
- Typically at $\hat{s} \sim 1$ TeV, $\mathcal{O}(10\%) \to \mathsf{NLO}\;\mathsf{EW} \sim \mathsf{NLO}\;\mathsf{QCD}$
- Important for BSM searches, large-x PDFs, ...

NLL

Simple expectation

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

However

ightarrow soft-collinear double logarithms: $lpha \log^2\left(rac{\hat{s}}{M^2}
ight)$

LL

EW Sudakov logarithms

ightarrow collinear single logarithms: $lpha \log\left(rac{\hat{s}}{M^2}
ight)$

NLL

 $\hat{s}\gg M_W^2$ (accessible at the LHC!)

- Sudakov logs dominant
- Typically at $\hat{s} \sim 1$ TeV, $\mathcal{O}(10\%) \rightarrow \mathsf{NLO} \; \mathsf{EW} \sim \mathsf{NLO} \; \mathsf{QCD}$
- Important for BSM searches, large-x PDFs, . . .

 $\hat{s} \sim M_W^2$ (resonant production)

- Sudakov logs negligible
- $m{\mathscr O}(1\%) o \mathsf{NLO} \; \mathsf{EW} \sim \mathsf{NNLO} \; \mathsf{QCD}$
- Important for precision physics $(M_W, M_Z, ...)$

 $\hat{s}\gg M_W^2$ region probed in e.g. transverse momentum $(p_{\rm T})$ distributions at large values of $p_{\rm T}$

 $(M_T, E_T, \dots \text{ distributions})$

 $\hat{s}\gg M_W^2$ region probed in e.g. transverse momentum $(p_{\rm T})$ distributions at large values of $p_{\rm T}$

 $(M_T, E_T, \dots \text{ distributions})$

Large cross sections at LO ⇒ good statistics; reducing theoretical error requires calculation of radiative corrections

At large p_T , LO subprocesses of $\mathcal{O}(\alpha \alpha_s)$

At large p_T , LO subprocesses of $\mathcal{O}(\alpha \alpha_s)$

- $\mathcal{O}(\alpha_{\mathrm{S}})$ QCD corrections [Ellis, Martinelli, Petronzio'81][Arnold, Reno'89][Arnold, Ellis, Reno'89] [Gonsalves, Pawłowski, Wai'89][Giele, Glover, Kosower'93][Melnikov, Petriello'06]
 - Implementations exist (DYRAD [Giele, Glover, Kosower'93], MCFM [Campbell, Ellis'02], FEWZ [Melnikov, Petriello'06], . . .)

- $\mathcal{O}(\alpha_{\mathrm{S}})$ QCD corrections [Ellis, Martinelli, Petronzio'81][Arnold, Reno'89][Arnold, Ellis, Reno'89] [Gonsalves, Pawłowski, Wai'89][Giele, Glover, Kosower'93][Melnikov, Petriello'06]
 - Implementations exist (DYRAD [Giele, Glover, Kosower'93], MCFM [Campbell, Ellis'02], FEWZ [Melnikov, Petriello'06], . . .)
 - ▶ Note: A MC with matrix element for $pp \to V(\to ...) + X$ gives a good description only at low p_T of V (hard gluon radiation missing)

- $\mathcal{O}(\alpha_{\mathrm{S}})$ QCD corrections [Ellis, Martinelli, Petronzio'81][Arnold, Reno'89][Arnold, Ellis, Reno'89] [Gonsalves, Pawłowski, Wai'89][Giele, Glover, Kosower'93][Melnikov, Petriello'06]
 - Implementations exist (DYRAD [Giele, Glover, Kosower'93], MCFM [Campbell, Ellis'02], FEWZ [Melnikov, Petriello'06], . . .)
 - ▶ Note: A MC with matrix element for $pp \to V(\to ...) + X$ gives a good description only at low p_T of V (hard gluon radiation missing)
- $\mathcal{O}(\alpha)$ EW corrections to LO $\mathcal{O}(\alpha\alpha_{\rm S})$ process (no QCD corrections)
 - γ/Z production [Maina, Moretti, Ross'04] (only numerical results)

- $\mathcal{O}(\alpha_{\mathrm{S}})$ QCD corrections [Ellis, Martinelli, Petronzio'81][Arnold, Reno'89][Arnold, Ellis, Reno'89] [Gonsalves, Pawłowski, Wai'89][Giele, Glover, Kosower'93][Melnikov, Petriello'06]
 - Implementations exist (DYRAD [Giele, Glover, Kosower'93], MCFM [Campbell, Ellis'02], FEWZ [Melnikov, Petriello'06], . . .)
 - ▶ Note: A MC with matrix element for $pp \to V(\to ...) + X$ gives a good description only at low p_T of V (hard gluon radiation missing)
- $\mathcal{O}(\alpha)$ EW corrections to LO $\mathcal{O}(\alpha\alpha_{\rm S})$ process (no QCD corrections)
 - γ/Z production [Maina, Moretti, Ross'04] (only numerical results)

 - Note: EW corrections to $pp \to (V \to \dots)$ known (p_T spectra od V decay products) \to implementations (DK [Dittmaier, $Kr\"{a}mer$,02], WGRAD2 [Baur, Wackeroth'04], SANC [Arbuzov et al.'06], HORACE [Carloni Calame et al.'06])
 - Recently NLO QCD + (NLO EW)|PARTON SHOWER [HORACE]
 - ightarrow high p_{T} distributions not reliable

$\mathcal{O}(\alpha)$ corrections to $q_iq_j \to Vg$

[Kühn, A.K., Pozzorini, Schulze'05-07]

 Z/γ production, V'=W,Z

- Loop corrections: IR-finite
- \blacksquare Real corrections: W, Z emission assumed possible to be observed \rightarrow not calculated

$\mathcal{O}(\alpha)$ corrections to $q_iq_j \to Vg$

[Kühn, A.K., Pozzorini, Schulze'05-07]

Loop corrections: IR-singular (photons)

$\mathcal{O}(lpha)$ corrections to $q_iq_j o Vg$

[Kühn, A.K., Pozzorini, Schulze'05-07]

$$W^{\pm}$$
 production, $V'=W,Z,\gamma$

- Loop corrections: IR-singular (photons)
- Real corrections: W, Z emission assumed possible to be observed \rightarrow not calculated photon emission IR-singular \rightarrow calculated

[Kühn, A.K., Pozzorini, Schulze'05-07]

- \blacksquare Exact results for NLO weak corrections to Z/γ and EW corrections to W^\pm production
 - ightarrow relatively compact analytic formulae for $\overline{\sum} |\mathcal{M}^{q_i q_j}|^2$

[Kühn, A.K., Pozzorini, Schulze'05-07]

- ${\color{red} {\bf _P}}$ Exact results for NLO weak corrections to Z/γ and EW corrections to W^{\pm} production
 - ightarrow relatively compact analytic formulae for $\overline{\sum} |\mathcal{M}^{q_i q_j}|^2$
- ightharpoonup NNLL approximation: high energy limit of the NLO result for $\overline{\sum} |\mathcal{M}^{q_i q_j}|^2$

$$M_W^2/\hat{s} o 0 \;\; (\; \hat{t}/\hat{s}, \; \hat{u}/\hat{s} \; {\rm constant})$$
 terms with $\alpha \ln^2(\frac{\hat{s}}{M_W^2}), \; \alpha \ln(\frac{\hat{s}}{M_W^2})$ and constants LL NLL NNLL

ightarrow extremely compact analytic formulae for NNLL approximation of $\overline{\sum} |\mathcal{M}^{q_i\,q_j}|^2$

[Kühn, A.K., Pozzorini, Schulze'05-07]

- ${\color{red} \blacktriangleright}$ Exact results for NLO weak corrections to Z/γ and EW corrections to W^{\pm} production
 - ightarrow relatively compact analytic formulae for $\overline{\sum} |\mathcal{M}^{q_i q_j}|^2$
- ullet NNLL approximation: high energy limit of the NLO result for $\overline{\sum} |\mathcal{M}^{q_i q_j}|^2$

$$M_W^2/\hat{s} o 0$$
 ($\hat{t}/\hat{s},\,\hat{u}/\hat{s}$ constant) terms with $\alpha \ln^2(\frac{\hat{s}}{M_W^2}),\,\alpha \ln(\frac{\hat{s}}{M_W^2})$ and constants LL NLL NNLL

- ightarrow extremely compact analytic formulae for NNLL approximation of $\overline{\sum} |\mathcal{M}^{q_i q_j}|^2$
- Dominant (NLL) part of two-loop (NNLO) EW correction

Exponentiated universal one-loop result [Denner, Melles, Pozzorini'03] + general resummation formula [Melles'02,'03] \rightarrow expansion to $\mathcal{O}(\alpha^2)$

[Kühn, A.K., Pozzorini, Schulze'05-07]

 \blacksquare Exact results for NLO weak corrections to Z/γ and EW corrections to W^\pm production

ightarrow relatively compact analytic formulae for $\overline{\sum} |\mathcal{M}^{q_i\,q_j}|^2$

ullet NNLL approximation: high energy limit of the NLO result for $\overline{\sum} |\mathcal{M}^{q_i q_j}|^2$

$$M_W^2/\hat{s} o 0 \;\; (\hat{t}/\hat{s},\,\hat{u}/\hat{s} \; {\rm constant})$$
 terms with $\alpha \ln^2(\frac{\hat{s}}{M_W^2}),\, \alpha \ln(\frac{\hat{s}}{M_W^2})$ and constants LL NLL NNLL

- ightarrow extremely compact analytic formulae for NNLL approximation of $\overline{\sum} |\mathcal{M}^{q_i\,q_j}|^2$
- Dominant (NLL) part of two-loop (NNLO) EW correction

Factorized corrections

$$\begin{split} \overline{\sum} |\mathcal{M}^{q_i q_j}|^2 &= \overline{\sum} |\mathcal{M}^{q_i q_j}_{\mathrm{Born}}|^2 \left[\quad 1 \quad + \quad \left(\frac{\alpha}{2\pi}\right) A^{(1)} \quad + \quad \left(\frac{\alpha}{2\pi}\right)^2 A^{(2)} \right] \\ \mathrm{LL} + \mathrm{NLL:} \qquad \qquad \alpha \ln^2(\frac{\hat{s}}{M_W^2}), \, \alpha \ln(\frac{\hat{s}}{M_W^2}) \quad \alpha^2 \ln^4(\frac{\hat{s}}{M_W^2}), \, \alpha^2 \ln^3(\frac{\hat{s}}{M_W^2}) \end{split}$$

EW corrections to $pp \rightarrow Z + 1$ jet at the LHC

$$\mathcal{R}_{\mathrm{NLO/LO}}^{\mathrm{h}ad} = \frac{d\sigma_{\mathrm{NLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

(LO MRST2001 PDF's, $\mu_F=\mu_R=p_T$)

 $\mathcal{O}(\alpha)$ corrections negative; range from -13% at 500 GeV up to -37 % at 2 TeV

EW corrections to $pp \rightarrow Z + 1$ jet at the LHC

$$\mathcal{R}_{\mathrm{NLO/LO}}^{\mathrm{h}ad} = \frac{d\sigma_{\mathrm{NLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

Integrated $\Delta \sigma(p_{\mathrm{T}}^{\mathrm{cut}})$ vs. $\Delta \sigma_{\mathrm{stat}} = \frac{\sigma}{\sqrt{N}}$ $N = \mathcal{L} \times \mathrm{BR}(Z{\to}l,~\nu_l) \times \sigma_{\mathrm{LO}}$ $\mathrm{BR}(Z{\to}l,~\nu_l) = 30.6\%$, $\mathcal{L} = 300~\mathrm{fb}^{-1}$

(LO MRST2001 PDF's, $\mu_F = \mu_R = p_T$)

- $\mathcal{O}(\alpha)$ corrections negative; range from -13% at 500 GeV up to -37 % at 2 TeV
- Size of the integrated corrections much bigger than the statistical error!

EW corrections to $pp \rightarrow Z + 1$ jet at the LHC

$$\mathcal{R}_{\mathrm{NNLO/LO}}^{\mathrm{h}ad} = \frac{d\sigma_{\mathrm{NNLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

 $p_{\mathsf{T}}\left[\mathsf{GeV}\right]$

Integrated
$$\Delta \sigma(p_{\mathrm{T}}^{\mathrm{cut}})$$
 vs. $\Delta \sigma_{\mathrm{stat}} = \frac{\sigma}{\sqrt{N}}$ $N = \mathcal{L} \times \mathrm{BR}(Z{\to}l,\ \nu_l) \times \sigma_{\mathrm{LO}}$ $\mathrm{BR}(Z{\to}l,\ \nu_l) = 30.6\%$, $\mathcal{L} = 300\ \mathrm{fb}^{-1}$

- $\mathcal{O}(\alpha)$ corrections negative; range from -13% at 500 GeV up to -37 % at 2 TeV
- Size of the integrated corrections much bigger than the statistical error!
- 2-loop terms positive, up to 8% contribution (at 2 TeV)
- ullet For large range of p_T values 2-loop effects comparable with statistical error

High-energy approximation of the 1-loop result

Large p_T Z-boson production at the LHC

$$\mathcal{R}_{
m NLO/LO}^{
m had} = rac{d\sigma_{
m NLO}/dp_T}{d\sigma_{
m LO}/dp_T} - 1$$
 etc.

(LO MRST2001 pdf's, $\mu_F=\mu_R=p_T$)

- NLL approximation: percent (or better) level
 - \sim 1% deviation from NLO at low p_T
 - \sim 0.2% deviation from NLO at $p_T=2$ TeV
- NNLL approximation: permille level

EW corrections to $pp \rightarrow \gamma + 1$ jet at the LHC

$$\mathcal{R}_{\mathrm{NLO/LO}}^{\mathrm{h}ad} = \frac{d\sigma_{\mathrm{NLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

(LO MRST2001 PDF's, $\mu_F=\mu_R=p_T$)

 $\mathcal{O}(\alpha)$ corrections negative; range from -6% at 500 GeV up to -17 % at 2 TeV

EW corrections to $pp \rightarrow \gamma + 1$ jet at the LHC

$$\mathcal{R}_{\mathrm{NLO/LO}}^{\mathrm{h}ad} = \frac{d\sigma_{\mathrm{NLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

Integrated
$$\Delta\sigma(p_{\mathrm{T}}^{\mathrm{cut}})$$
 vs. $\Delta\sigma_{\mathrm{stat}}=\frac{\sigma}{\sqrt{N}}$ $N=\mathcal{L}\times\sigma_{\mathrm{LO}}$ $\mathcal{L}=300~\mathrm{fb}^{-1}$

(LO MRST2001 PDF's, $\mu_F=\mu_R=p_T$)

- $\mathcal{O}(\alpha)$ corrections negative; range from -6% at 500 GeV up to -17 % at 2 TeV
- ullet Size of the integrated $\mathcal{O}(\alpha)$ corrections much bigger than the statistical error!

EW corrections to $pp \rightarrow \gamma + 1$ jet at the LHC

$$\mathcal{R}_{\mathrm{NNLO/LO}}^{\mathrm{h}ad} = \frac{d\sigma_{\mathrm{NNLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

Integrated
$$\Delta \sigma(p_{\mathrm{T}}^{\mathrm{cut}})$$
 vs. $\Delta \sigma_{\mathrm{stat}} = \frac{\sigma}{\sqrt{N}}$ $N = \mathcal{L} \times \sigma_{\mathrm{LO}}$ $\mathcal{L} = 300 \ \mathrm{fb}^{-1}$

- $m{\mathcal{O}}(\alpha)$ corrections negative; range from -6% at 500 GeV up to -17 % at 2 TeV
- Size of the integrated $\mathcal{O}(\alpha)$ corrections much bigger than the statistical error!
- 2-loop terms positive, up to 3% contribution (at 2 TeV)
- ullet For large range of p_T values 2-loop effects comparable with statistical error

EW corrections to $pp \rightarrow W^{\pm} + 1$ jet at the LHC

- ${\cal O}(lpha)$ corrections negative; range from -15% at $p_{
 m T}=500$ GeV up to -42% at $p_{
 m T}=2$ TeV
- NLL approximation in good agreement with the full NLO result
- \blacksquare NLL 2-loop terms positive and amount to 2% at $p_{\rm T}=500~{\rm GeV}$ and up to 10% at $p_{\rm T}=2~{\rm TeV}$

(LO MRST2001 PDFs,
$$\mu_F=\mu_R=p_T$$
, $p_T^{\min}({
m jet})=100$ GeV)

EW corrections to $pp \rightarrow W^{\pm} + 1$ jet at the LHC

Integrated
$$\Delta\sigma(p_{\mathrm{T}}^{\mathrm{cut}})$$
 vs. $\Delta\sigma_{\mathrm{stat}}=\frac{\sigma}{\sqrt{N}}$ $N=\mathcal{L}\times\mathrm{BR}(W{\to}e\nu_{e},\mu\nu_{\mu})\times\sigma_{\mathrm{LO}}$ $\mathrm{BR}(W{\to}e\nu_{e},\mu\nu_{\mu})=22.2\%,$ $\mathcal{L}=300~\mathrm{fb}^{-1}$

- Size of the integrated $\mathcal{O}(\alpha)$ corrections much bigger than the statistical error!
- For large range of p_T values
 2-loop effects comparable with
 statistical error

(LO MRST2001 PDFs,
$$\mu_F=\mu_R=p_T$$
, $p_T^{\min}({
m jet})=100$ GeV)

Ratio of the p_T distributions: γ to Z

- ightharpoonup Cancellation of theoretical uncertainties (PDFs $\alpha_{\rm S}$)
- Stability wrt. QCD corrections
- ho Ratio of the LO distributions: $\frac{d\sigma^{\gamma}}{dp_T}/\frac{d\sigma^{Z}}{dp_T}\sim 0.7-0.8$
- ightharpoonup EW corrections modify the ratio; strongest effect at large p_T

NLO:
$$\frac{d\sigma^{\gamma}}{dp_T}/\frac{d\sigma^Z}{dp_T}\sim 0.75-1$$
, NNLO: $\frac{d\sigma^{\gamma}}{dp_T}/\frac{d\sigma^Z}{dp_T}\sim 0.75-0.95$

Ratio of the p_T distributions: W^+ to W^- , W^+ to Z

- \blacksquare EW corrections to $\frac{d\sigma^{W^+}}{dp_T}/\frac{d\sigma^{W^-}}{dp_T}$ almost identical
- ightharpoonup Above 1 TeV, 5-10% corrections to $\frac{d\sigma^{W}}{dp_{T}}/\frac{d\sigma^{Z}}{dp_{T}}$

Summary

- Analytic results for the p_T distribution of direct photons, Z-bosons and W-bosons
 - **•** Exact $\mathcal{O}(\alpha)$ correction
 - **■** NNLL approximation of the $\mathcal{O}(\alpha)$ correction \rightarrow excellent approximation
 - Dominant (NLL) part of the 2-loop corrections
- Results are in compact form, ready to implement in a code of your choice
- **Conclusion:** EW corrections extremely important for the precise knowledge of the production cross sections at large p_T (large logs at TeV scales!)
 - ullet Negative 1-loop corrections of the order of tens of percent at high p_{T} at the LHC
 - Positive 2-loop NLL corrections of the order of several percent at high $p_{\rm T}$ at the LHC ⇒ relevant for the analysis!
- ightharpoonup Ratio $rac{d\sigma^{\gamma}}{dp_T}/rac{d\sigma^{Z}}{dp_T}$ and $rac{d\sigma^{W^{\pm}}}{dp_T}/rac{d\sigma^{Z}}{dp_T}$: significant effects due to EW corrections at large p_T
- Relevant issues...
 - ullet Size of the stat. error due to detector and bckg. subtraction at large p_{T}
 - Extent to which real radiation of massive gauge bosons can be seen in the experiment