



# Minimum Bias Trigger

#### Regina Kwee

Humboldt Universität zu Berlin DESY Zeuthen

22. May 2007 - DESY Hamburg DESY - ATLAS - Group - Meeting

# trigger concept

10% minimum bias events are expected in 13 MHz at

- low luminosity  $10^{31}$  cm<sup>-2</sup> s<sup>-1</sup>
- $4 \text{ } \sqrt{\text{s}} = 14 \text{ TeV}$



# Empty Event Rejection SCT spacepoints





- noise events in cosmic runs of a ¼ SCT barrel + ¼ SCT endcap
- SCT spacepoints in minimum bias events

# Empty Event Rejection pixel spacepoints



pixel spacepoints in simulated noise events



pixel spacepoints in simulated minbias events

# noise rejection efficiency

| SCT cut | noise | minbias |
|---------|-------|---------|
| 20      | 0.40  | 99.2    |
| 30      | 0.23  | 98.7    |
| 40      | 0.20  | 97.7    |
| 50      | 0.19  | 96.1    |

good rejection efficiency!

| pixel cut | noise | minbias |
|-----------|-------|---------|
| 800       | 75.4  | 99.6    |
| 850       | 14.4  | 99.2    |
| 900       | 0.4   | 86.5    |
| 950       | 0     | 71.0    |

loss of minimum bias multiplicity!

## Beamgas Rejection with NewT

- Will NewT algorithms stay inside the EF time budget for minimum bias events?
- Does NewT reconstruct efficiently low pT tracks?
- ❖ What is fake rate is thereby expected?
- Where can we cut to reject beam gas events?
- How efficient is beam gas rejected ?

# Timing of NewT Algorithms

- ❖ TRT was excluded (analogue to IdScan)
- tested two different setups runnig on RDO in 12.0.6
  - trigger- and offline-NewT
  - for trigger setup: timing for "uncontrained seed search" and "contraint seed search" were measured.
- tested trigger setup implemented in 13 running on bytestream data
- ❖ used atlhtl3 [2 dual core processors each with Intel(R) Xeon(R) CPU 5160@3.00GHz, 4 MB cache, 8 GB memory]

# table for EF algorithms on minbias events

| zFinder ON                | SCT [ms] | PIXEL [ms] | SCT+Pixel<br>[ms] |
|---------------------------|----------|------------|-------------------|
| SCTClustering             | 108.3    | 108        | 108.3             |
| PixelClustering           | 44.4     | 44.4 44.7  |                   |
| SiTrigSpacePointFinder    | 87.1     | 21.3       | 108               |
| SiTrigTrackFinder         | 96.5     | 99.8       | 134               |
| TrigAmbiguitySolver       | 17.4     | 17.1       | 24.8              |
| Total Time SP formation   | 245      | 177        | 264               |
| Total Time up to tracking | 360      | 294        | 423               |

### table for offline setup for minbias ran from RDO

| constraint seed search       | SCT<br>[ms] | PIXEL<br>[ms] | SCT+Pixel<br>[ms] |
|------------------------------|-------------|---------------|-------------------|
| SCT_Clusterization:execute   | 110         | 110           | 130               |
| PixelClusterization:execute  | 110         | 100           | 120               |
| SiTrackerSpacePointFinder:e  | 13.9        | 3.82          | 17.9              |
| InDetSiSPTrackFinder:execute | 17.5        | 24.7          | 72.9              |
| InDetAmbiguitySolver:execute | 17.6        | 17            | 25.7              |
| Total Time SP formation      | 235         | 214           | 268               |
| Total Time up to tracking    | 270         | 117           | 367               |

#### minbias BS events empty BS events

| unconstraint seed search                   | SCT+PIX[ms]<br>500 MeV pT-cut | SCT+PIX[ms]<br>500 MeV pT-cut |
|--------------------------------------------|-------------------------------|-------------------------------|
| Total Time up to SP = pixClust+sctClust+SP | 521=112+226+183               | 436=87+181+168                |
| Total Time up to tracking = SP+TrackFinder | 850                           | 589.58                        |

in NewT

0.9 \* 436 ms + 0.1\*850 ms = 475 ms for SCT+PIX

0.9 \* 360 ms + 0.1\*740 ms = 400 ms for SCT

spacepoint formation in IdScan

0.9 \* 33 ms + 0.1\*34 ms = 33 ms for SCT+PIX

possible combination

0.9 \* 33 ms + 0.1\*850 ms = 115 ms for SCT+PIX

# Timing Resumée

- ✓ trigger setup was 5 times slower than offline setup due different method to access event (in RegionSelector)
- ✓ no significant gain in speed was found using contraint seed serach with respect to unconstraint seed search
- ✓ Using the offline method of the RegionSelector, one will be fast and stay inside EF latency
- ✓ Even the timings for the trigger are well within the time budget.
- ✓ timing for minimum bias and empty events are shown

### reconstruction efficiency for minbias sample in NewT

- ❖ TrkEF\_pt = number of reconstructed tracks with | TrkEF-eta | < 2.5
- ❖ PtGen = number of stable, charged generated particles with PtGen ≥500 MeV produced in central region and possessing start- and end vertex

#### ε := TrkEF\_pt/PtGen, is still prelimary as

• no matching of gen. pT to rec. pT was taken into account (reason why  $\epsilon > 1$ )





❖ fake rate in NewT reconstruction for minbias (trigger setup) < 2%



- reconstruction efficiency in NewT for different cuts on # reconstructed tracks
- ε:=(cut at j no. of rec. tracks, with cut on gen. pT > 500 MeV)/ (no. of rec. tracks, with cut on gen. pT > 500 MeV)for j=1...30



# z0 cut for beamgas rejection

no were cuts applied









## conclusion/outlook

- NewT seems very suitable for reconstructing minimum bias events: good reconstruction efficiency, low fake rate
- ❖ For trigger implementation one should use the offline method to access an event as the spacepoints finding algorithm is much faster (more than 5 times!)
- empty event rejection is very efficient by cutting on the number of SCT spacepoints (>99 %)
- beamgas rejection needs further study with better data sample
- else implementation can start!
- ❖ in rel. 13 a minimum bias slice exsists already using a fake RoI and only silicon pattern recognition algorithms, but this has to be precised

# backup