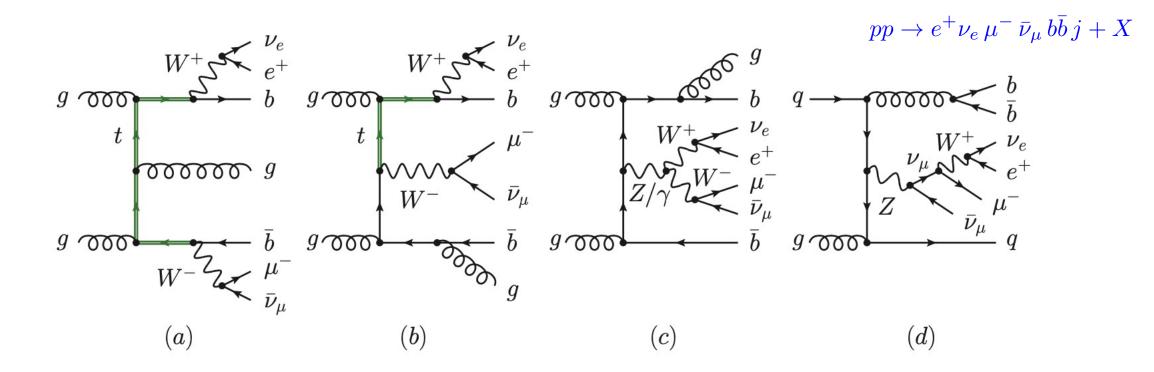
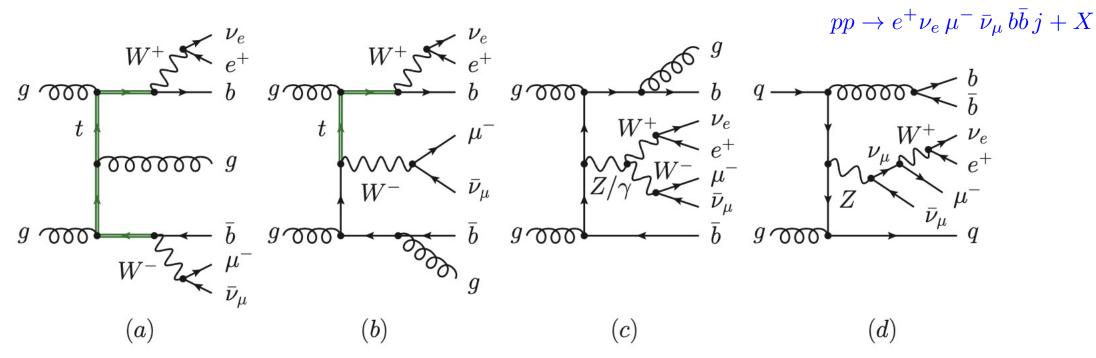
TOP QUARK MASS STUDIES WITH $pp \rightarrow ttj$ @ LHC

Malgorzata Worek

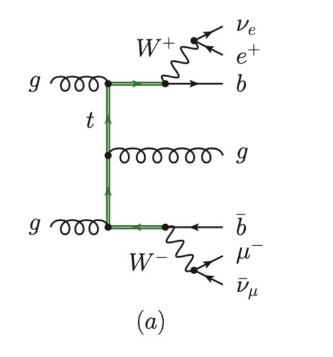


Phys.Rev.Lett. 116 (2016) 5, 052003 JHEP 11 (2016) 098 JHEP 03 (2018) 169

Theory-Experimental Top Quark Mass Workshop, 27-28 June 2022


1

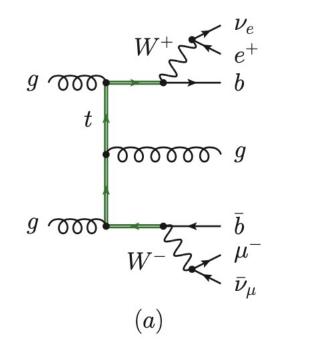
PLAN


On/Offshell effects in top-quark mass extraction

FULL/COMPLETE OFF-SHELL EFFECTS

- Off-shell *t* & *W* described by Breit-Wigner propagators
- Double-, single- & non-resonant top-quark contributions included
- All interference effects incorporated at matrix element level
- NLO QCD corrections to production & decays
- Nonfactorizable NLO QCD corrections included ⇒ Cross-talk between production & decays
- NLO spin correlations

$$pp \to t\bar{t}j + X \to W^+W^+ b\bar{b}j + X \to e^+\nu_e \,\mu^-\bar{\nu}_\mu \,\,b\bar{b}j + X$$


NWA WITH LO DECAYS (NWALODEC)

- Without NLO QCD corrections to top-quark decays
- Hard jet only in production stage
- LO spin correlations

 $\Gamma_t = 1.35146 \text{ GeV}, \ m_t = 173.2 \text{ GeV}, \ \Gamma_t/m_t \approx 0.008$

- Works in the limit $\Rightarrow \Gamma_t/m_t \to 0$
- Incorporates only double resonant contributions
- Restricts unstable $t \otimes W$ to on-shell states
- NLO QCD corrections separately to production & separately to decays
- Hard jet also emitted in top-quark decay stage
- NLO QCD nonfactorizable corrections missing ⇒ No cross-talk between production & decays
- NLO spin correlations

NLO + PS

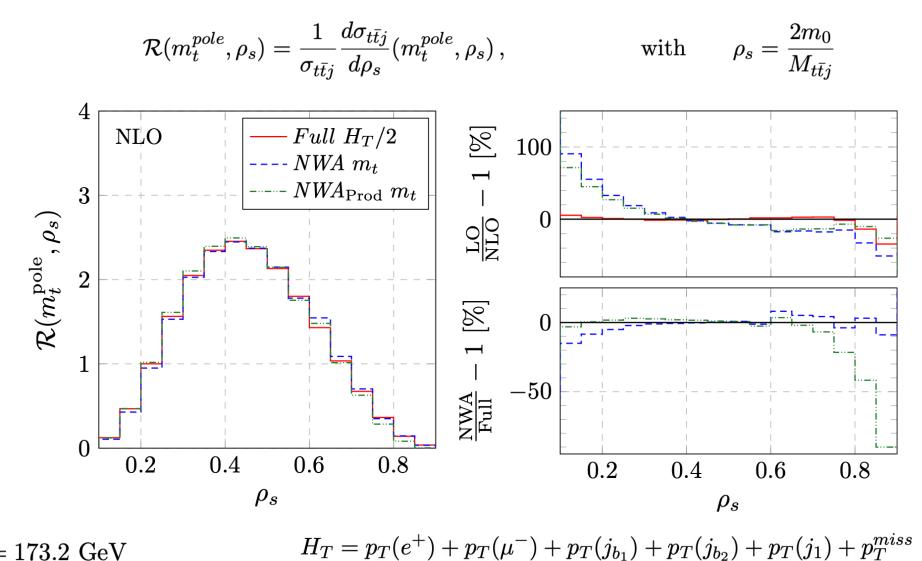
 $pp \to t\bar{t}j + X \to W^+W^+ b\bar{b}j + X \to e^+\nu_e \,\mu^-\bar{\nu}_\mu \,\,b\bar{b}j + X$

POWHEG-BOX MG5_AMC@NLO POWHEG-BOX + LO DECAYS MG5_AMC@NLO + MADSPIN

- NLO QCD corrections to stable t & W matched to parton shower programs: ttj @ NLO+PS
- Decays via parton shower ⇔ Without spin correlations
- Decays using LO matrix element
 - Double resonant contributions only
 - Breit-Wigner propagators for $t \otimes W$ with some cut-off
 - LO spin correlations
 - Single & non-resonant contributions for *t* & *W* are still missing as well as their interference effects

PROCESS

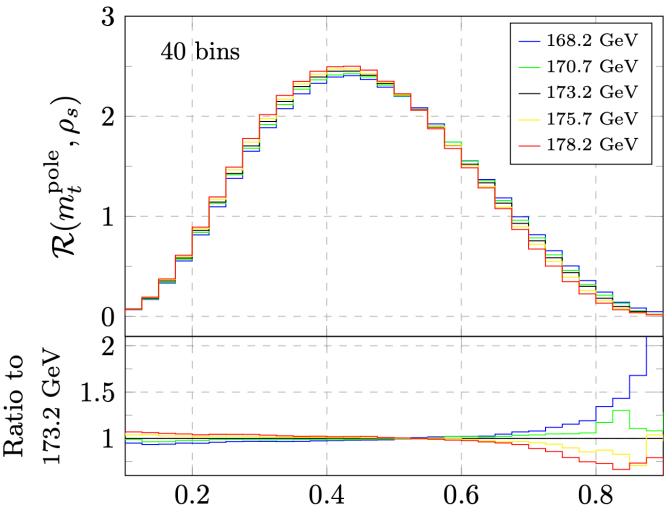
- *ttj* @ $\mathcal{O}(\alpha_s^4 \alpha^4)$ in fiducial phase space region @ LHC with $\sqrt{s} = 13 \ TeV$.
- Jets: IR-safe *anti*- k_T jet algorithm with separation parameter set to R = 0.5
- We require:


exactly 2 b-jets, at least one light-jet, two charged leptons & non-zero missing transverse momentum

• These final states have to fulfil inclusive selection cuts

$p_{T,\ell} > 30 \mathrm{GeV},$	$p_{T,j} > 40 \mathrm{GeV},$
$p_T > 40 \mathrm{GeV} ,$	$\Delta R_{jj} > 0.5,$
$\Delta R_{\ell\ell} > 0.4,$	$\Delta R_{\ell j} > 0.4,$
$ y_\ell < 2.5,$	$ y_j < 2.5,$

 $pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b}\,j + X$



 $m_t = 173.2 \,\,{\rm GeV}$

7

 $pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b}\,j + X$

- Normalised ρ_s differential distribution
- Full case for 5 different top quark masses
- Default value $m_t = 173.2 \text{ GeV}$
- Renormalisation & factorisation scales set to $\mu_R = \mu_F = \mu_0 = H_T / 2$
- CT14 PDF set employed
- Mass dependence observed for regions $\rho_s < 0.4 \& \rho_s > 0.6$
- Regions most sensitive to top-quark mass extraction above $\rho_s > 0.7$

 ho_s

- Pseudo-data generated from full off-shell NLO QCD calculations for $pp \rightarrow e^+ v_e \mu^- v_\mu bbj + X$ production • $m_t = 173.2 \text{ GeV } \& \mu_0 = H_T / 2$
- Predictions @ NLO in QCD: *Full off-shell & NWA & NWA*_{Prod} with LO top-quark decays with CT14 PDF set
- Various scales choices: $\mu_0 = H_T / 2 \mathcal{E} \mu_0 = E_T / 2 \mathcal{E} \mu_0 = m_t$

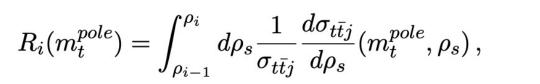
$$E_T = \sqrt{m_t^2 + p_T^2(t)} + \sqrt{m_t^2 + p_T^2(\bar{t})},$$

$$H_T = p_T(e^+) + p_T(\mu^-) + p_T(j_{b_1}) + p_T(j_{b_2}) + p_T(j_1) + p_T^{miss}$$

- Five different top-quark masses $\Rightarrow m_t \in \{168.2, 170.7, 173.2, 175.7, 178.2\}$ GeV
- High statistics Monte Carlo errors in each bin \Rightarrow Negligible compared to errors of pseudo-data samples

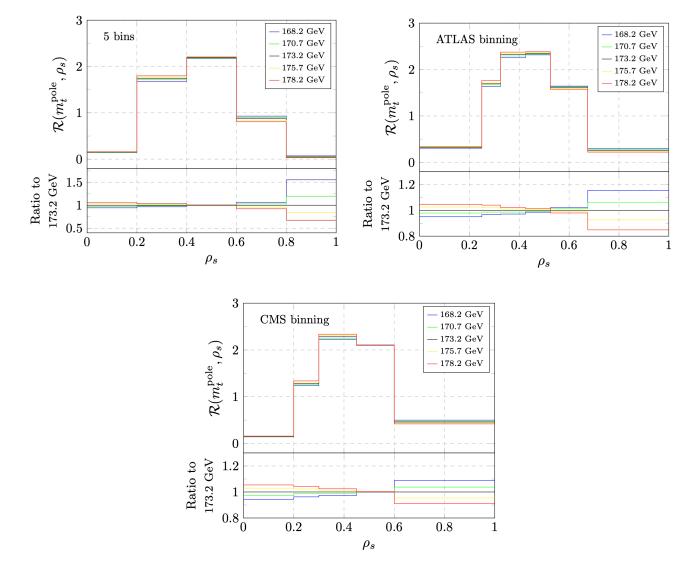
- Theoretical uncertainties from scale variation and from PDFs not included in χ^2 distribution
- They are treated as external variations
- Scale variation ⇒ Increases as number of bins decreases
 - Dynamical scale setting: (0.6 1.2) *GeV*
 - Fixed scale setting: (2.1 2.8) GeV

$$egin{aligned} \left(\Delta m_t^{out}
ight)_\mu &= \pm \max\left\{ \left. \left| m_t^{out}\left(rac{\mu_0}{2}, ext{CT14}
ight) - m_t^{out}(\mu_0, ext{CT14})
ight|,
ight. \ &\left| m_t^{out}(2\mu_0, ext{CT14}) - m_t^{out}(\mu_0, ext{CT14})
ight|
ight\}, \end{aligned}$$


• PDFs

 \circ (0.4 – 0.7) GeV

$$\begin{split} \left(\Delta m_t^{out}\right)_{\rm PDF} &= \pm \max \left\{ \left. \begin{vmatrix} m_t^{out}(\mu_0, \text{MMHT14}) - m_t^{out}(\mu_0, \text{CT14}) \end{vmatrix} \right\}, \\ &\left. \begin{vmatrix} m_t^{out}(\mu_0, \text{NNPDF3}) - m_t^{out}(\mu_0, \text{CT14}) \end{vmatrix} \right\}. \end{split}$$


• Highest value from two obtained results chosen and symmetrisation not utilised

$pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b}\,j + X$

5 equal size bins	ATLAS binning	CMS binning
0.00 - 0.20	0.000 - 0.250	0.00 - 0.20
0.20 - 0.40	0.250 - 0.325	0.20 - 0.30
0.40 - 0.60	0.325 - 0.425	0.30 - 0.45
0.60 - 0.80	0.425 - 0.525	0.45 - 0.60
0.80 - 1.00	0.525 - 0.675	0.60 - 1.00
	0.675 - 1.000	_

- Various binnings used in m_t extraction from normalised ρ_s distribution
- 5 equal size intervals, ATLAS and CMS intervals

RESULTS

- Mean value of top-quark mass m_t^{out} from 1000 pseudoexperiments
- 68% C.L. (1 σ) statistical error of top-quark mass δm_t^{out}
- Averaged minimal $\chi^2/d.o.f$ and *p-value*
- Top-quark mass shift $m_t^{in} m_t^{out}$ with $m_t^{in} = 173.2 \text{ GeV}$

• FINDINGS:

- Mass shifts of (2.0 2.5) *GeV* for NWA
- Mass shifts of (3.2 3.8) GeV for NWA_{Prod}
- If full case with $\mu_0 = m_t$ used for generation of pseudo-data mass shifts of (1.2 2.0) *GeV* for NWA
- Statistical uncertainty δm_t^{out} still quite high

Theory, NLO QCD CT14 PDF	$m_t^{out} \pm \delta m_t^{out}$ [GeV]	Averaged $\chi^2/d.o.f.$	Probability <i>p-value</i>	$\begin{array}{c} m_t^{in} - m_t^{out} \\ [\text{GeV}] \end{array}$
	31 bins			
Full, $\mu_0 = H_T/2$	173.38 ± 1.34	1.04	$0.40~(0.8\sigma)$	-0.18
Full, $\mu_0=E_T/2$	172.84 ± 1.33	1.05	$0.39~(0.9\sigma)$	+0.36
Full, $\mu_0=m_t$	174.11 ± 1.39	1.07	$0.37~(0.9\sigma)$	-0.91
$NWA, \mu_0 = m_t$	175.70 ± 0.96	1.17	$0.24~(1.2\sigma)$	-2.50
$NW\!A_{Prod.}, \mu_0 = m_t$	169.93 ± 0.98	1.20	$0.20~(1.3\sigma)$	+3.27
	$5 \ bins$			
Full, $\mu_0 = H_T/2$	173.15 ± 1.32	0.93	$0.44 \ (0.8\sigma)$	+0.05
Full, $\mu_0 = E_T/2$	172.55 ± 1.18	1.07	$0.37 (0.9\sigma)$	+0.65
Full, $\mu_0 = m_t$	173.92 ± 1.38	1.48	$0.20 (1.3\sigma)$	-0.72
$NWA, \mu_0 = m_t$	175.54 ± 0.97	1.38	$0.24 (1.2\sigma)$	-2.34
$NW\!A_{Prod.}, \mu_0 = m_t$	169.37 ± 1.43	1.16	$0.33~(1.0\sigma)$	+3.83
	ATLAS binning			
Full, $\mu_0 = H_T/2$	173.05 ± 1.31	0.99	$0.42 \ (0.8\sigma)$	+0.15
Full, $\mu_0=E_T/2$	172.19 ± 1.34	1.05	$0.39 (0.9\sigma)$	+1.01
Full, $\mu_0=m_t$	173.86 ± 1.39	1.42	$0.21~(1.2\sigma)$	-0.66
$NW\!A, \mu_0 = m_t$	175.22 ± 1.15	1.38	$0.23~(1.2\sigma)$	-2.02
$NW\!A_{Prod.}, \mu_0 = m_t$	169.39 ± 1.46	1.12	$0.35~(0.9\sigma)$	+3.81
	CMS binning			
Full, $\mu_0 = H_T/2$	173.09 ± 1.53	0.94	$0.44~(0.8\sigma)$	+0.11
Full, $\mu_0 = E_T/2$	172.20 ± 1.54	0.96	$0.43~(0.8\sigma)$	+1.00
Full, $\mu_0=m_t$	173.94 ± 1.49	1.42	$0.22~(1.2\sigma)$	-0.74
$NW\!A, \mu_0 = m_t$	175.66 ± 1.10	1.42	$0.22~(1.2\sigma)$	-2.46
$NWA_{Prod.}, \mu_0 = m_t$	169.96 ± 1.80	1.00	$0.41~(0.8\sigma)$	+3.24

RESULTS

- Mean value of top-quark mass m_t^{out} from 1000 pseudoexperiments
- 68% C.L. (1 σ) statistical error of top-quark mass δm_t^{out}
- Averaged minimal $\chi^2/d.o.f$ and *p-value*
- Top-quark mass shift $m_t^{in} m_t^{out}$ with $m_t^{in} = 173.2 \text{ GeV}$

• FINDINGS:

- Mass shifts again up to 2.5 *GeV* for NWA
- Mass shifts up to 2.0 *GeV* for NWA with $\mu_0 = m_t$ when pseudo-data generated from full case with $\mu_0 = m_t$
- Mass shifts of (3.0 3.8) GeV for NWA_{Prod}
- $\delta m_t^{out} = (0.3 0.5) \, GeV \, \text{only}$
- Not only full off-shell effects, non-resonant background and interreference effects of $t \otimes W$ but also scale choices play important role

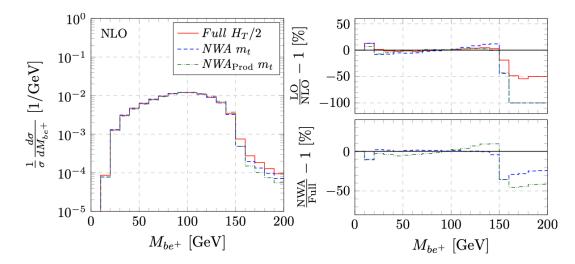
Theory, NLO QCD CT14 PDF	$m_t^{out} \pm \delta m_t^{out}$ [GeV]	Averaged $\chi^2/d.o.f.$	Probability <i>p-value</i>	$m_t^{in} - m_t^{out}$ [GeV]
	31 bins			
Full, $\mu_0 = H_T/2$	173.09 ± 0.42	1.04	$0.41 \ (0.8\sigma)$	+0.11
Full, $\mu_0 = E_T/2$	172.45 ± 0.39	1.12	$0.30~(1.0\sigma)$	+0.75
Full, $\mu_0=m_t$	173.76 ± 0.40	1.87	$0.003~(3.0\sigma)$	-0.56
NWA, $\mu_0 = m_t$	175.65 ± 0.31	2.99	$7 \cdot 10^{-8} (5.4\sigma)$	-2.45
$NW\!A_{Prod.}, \mu_0 = m_t$	169.59 ± 0.30	3.10	$2\cdot 10^{-8}~(5.6\sigma)$	+3.61
	5 bins			
Full, $\mu_0 = H_T/2$	173.08 ± 0.40	0.94	$0.44~(0.8\sigma)$	+0.12
Full, $\mu_0 = E_T/2$	172.48 ± 0.38	1.58	$0.18~(1.3\sigma)$	+0.72
Full, $\mu_0=m_t$	173.75 ± 0.40	6.76	$2\cdot 10^{-5}~(4.3\sigma)$	-0.55
NWA, $\mu_0 = m_t$	175.49 ± 0.30	5.31	$2 \cdot 10^{-4} (3.7\sigma)$	-2.29
$NW\!A_{Prod.}, \mu_0 = m_t$	169.39 ± 0.47	3.42	$8 \cdot 10^{-3} \ (2.6\sigma)$	+3.81
	$ATLAS \ binning$			
Full, $\mu_0 = H_T/2$	173.06 ± 0.44	0.97	$0.44~(0.8\sigma)$	+0.14
Full, $\mu_0 = E_T/2$	172.36 ± 0.44	1.38	$0.23~(1.2\sigma)$	+0.84
Full, $\mu_0=m_t$	173.84 ± 0.42	5.12	$1 \cdot 10^{-4} (3.9\sigma)$	-0.64
NWA, $\mu_0 = m_t$	175.23 ± 0.37	5.28	$7 \cdot 10^{-5} (4.0\sigma)$	-2.03
$NW\!A_{Prod.}, \mu_0 = m_t$	169.43 ± 0.50	2.61	$0.02~(2.3\sigma)$	+3.77
	CMS binning			
Full, $\mu_0 = H_T/2$	173.09 ± 0.50	0.96	$0.43~(0.8\sigma)$	+0.11
Full, $\mu_0=E_T/2$	172.22 ± 0.48	1.32	$0.26~(1.1\sigma)$	+0.98
Full, $\mu_0=m_t$	174.02 ± 0.46	6.57	$3\cdot 10^{-5}~(4.2\sigma)$	-0.82
NWA, $\mu_0 = m_t$	175.74 ± 0.34	6.00	$8\cdot 10^{-5} \ (3.9\sigma)$	-2.54
$NW\!A_{Prod.}, \mu_0 = m_t$	170.22 ± 0.53	2.19	$0.07~(1.8\sigma)$	+2.98

13

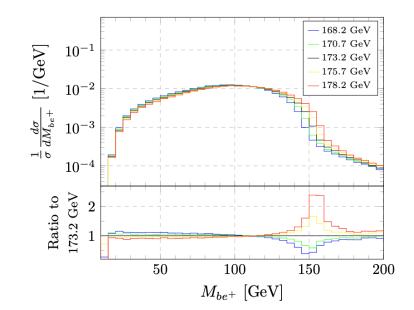
SUMMARY

- Three different theoretical descriptions of top-quark decay chain investigated
- In first approach all interferences, off-shell effects and non-resonant backgrounds included
- In second approach top-quark decays in NWA considered:

• NWA ⇒ QCD corrections and jet radiation present also in top-quark decays


- \circ NWA_{Prod} \Rightarrow Corrections to production process with leading order top-quark decays
- Pseudo-data sets generated from best theoretical description
 - Full prediction at NLO in QCD as generated with $m_t = 173.2 \text{ GeV } \mathcal{B} \mu_R = \mu_F = \mu_0 = H_T / 2$
 - Full prediction at NLO in QCD with $\mu_0 = m_t$ also checked
- $L = 2.5 fb^{-1} \& L = 25 fb^{-1}$
 - o 5400 & 54000 events assuming perfect detector efficiency
 - Mass shifts up to 2.5 *GeV* for NWA
 - Mass shifts up to 3.8 GeV for NWA_{Prod}
 - Statistical uncertainty on top-quark mass $\delta m_t^{out} = (1 1.5) GeV \& \delta m_t^{out} = (0.3 0.5) GeV$

SUMMARY


- Theoretical study \Rightarrow Additional systematic uncertainties need to be addressed
- Among others impact of parton shower on shape of ρ_s should be examined
- Non-perturbative effects together with *b-jet* tagging and neutrino reconstruction efficiencies should be estimated
- We can make following general statements
 - SMALL LUMINOSITY:
 - Large mass shifts
 - Various theoretical descriptions at NLO in QCD can be employed as long as one compensates for these mass shifts
 - We do not have sufficient sensitivity to see differences in various descriptions of top-quark decays
 - LARGER LUMINOSITY:
 - Large mass shifts
 - Full theoretical description with dynamical scale choice, either $\mu_0 = H_T / 2$ or $\mu_0 = E_T / 2$, should be used to simulate *ttj* production @ LHC to extract top-quark mass
- Higher number of bins corresponds to increased sensitivity to m_t
- Helps to clearly distinguish between case where theory (still) agrees with pseudo-data and case where theory
 is disfavoured by such pseudo-data

OUTLOOK

$$pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b} \,j + X$$

Theory, NLO QCD	$m_t^{out}\pm\delta m_t^{out}$	Averaged	Probability	$m_t^{in} - m_t^{out}$
CT14 PDF	[GeV]	$\chi^2/{ m d.o.f.}$	p-value	[GeV]
	$31 \ bins @ 2.5 \ fb^{-1}$			
Full, $\mu_0 = H_T/2$	173.09 ± 0.48	1.05	$0.38~(0.9\sigma)$	+0.11
Full, $\mu_0 = E_T/2$	173.01 ± 0.50	1.06	$0.37~(0.9\sigma)$	+0.19
Full, $\mu_0=m_t$	173.07 ± 0.49	1.22	$0.18~(1.3\sigma)$	+0.13
$NWA, \mu_0 = m_t$	173.90 ± 0.50	1.11	$0.30~(1.0\sigma)$	-0.70
$NWA_{\mathrm{Prod.}}, \mu_0 = m_t$	172.56 ± 0.54	1.64	$0.01~(2.6\sigma)$	+0.64
	$31 \ bins @ 25 \ {\rm fb}^{-1}$			
Full, $\mu_0 = H_T/2$	173.18 ± 0.15	1.02	$0.42~(0.8\sigma)$	+0.02
Full, $\mu_0 = E_T/2$	173.23 ± 0.15	1.03	$0.41~(0.8\sigma)$	-0.03
Full, $\mu_0=m_t$	173.22 ± 0.16	1.78	$0.005~(2.8\sigma)$	-0.02
$NWA, \mu_0 = m_t$	173.98 ± 0.16	2.56	$5 \cdot 10^{-6} (4.6\sigma)$	-0.78
$NW\!A_{\mathrm{Prod.}}, \mu_0 = m_t$	172.62 ± 0.17	8.23	$0 \ (\gg 5\sigma)$	+0.58

