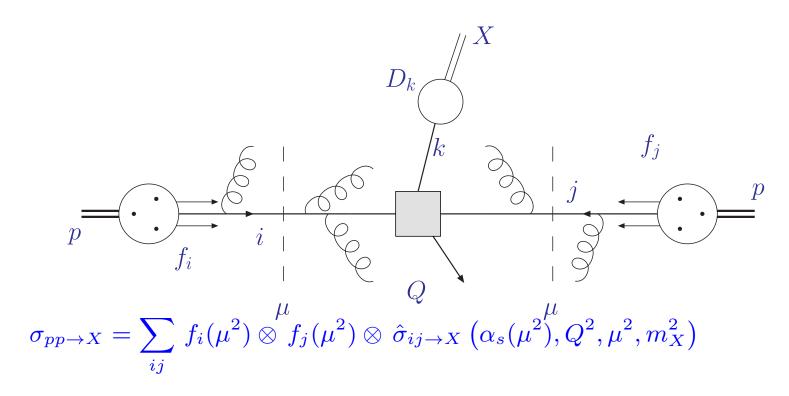
Discussion: Progress in theory

Sven-Olaf Moch

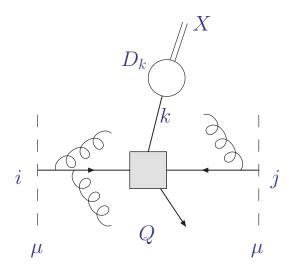

Universität Hamburg

Sven-Olaf Moch

Based on work done in collaboration with:

- One-loop soft anomalous dimension matrices for $t\bar{t}j$ hadroproduction B. Chargeishvili, M. V. Garzelli, and S. M. arxiv:2206.10977
- Phenomenology of $t\bar{t}j+X$ production at the LHC S. Alioli, J. Fuster, M. V. Garzelli, A. Gavardi, A. Irles, D. Melini, S. M. P. Uwer and K. Voß arxiv:2202.07975
- Cross-sections for $t\bar{t}H$ production with the top quark \overline{MS} mass A. Saibel, S. M. and M. Aldaya Martin arXiv:2111.12505
- Heavy-flavor hadro-production with heavy-quark masses renormalized in the \overline{MS} , MSR and on-shell schemes M. V. Garzelli, L. Kemmler S. M. and O. Zenaiev arxiv:2009.07763
- [...]
- Parton distribution functions, α_s , and heavy-quark masses for LHC Run II S. Alekhin, J. Blümlein, S. M. and R. Plačakytė arxiv:1701.05838
- [...]
- Top-quark pair production near threshold at LHC
 Y. Kiyo, J. H. Kühn, S. M. M. Steinhauser and P. Uwer arxiv:0812.0919
- [...]

QCD factorization



- Factorization at scale μ
 - separation of sensitivity to dynamics from long and short distances
- Hard parton cross section $\hat{\sigma}_{ij o X}$ calculable in perturbation theory
 - cross section $\hat{\sigma}_{ij\to k}$ for parton types i,j and hadronic final state X
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, . . .

Sven-Olaf Moch

Hard scattering cross section

- Parton cross section $\hat{\sigma}_{ij o k}$ calculable pertubatively in powers of α_s
 - known to NLO, NNLO, ... ($\mathcal{O}(\text{few}\%)$) theory uncertainty)

- Accuracy of perturbative predictions
 - LO (leading order)
 - NLO (next-to-leading order)
 - NNLO (next-to-next-to-leading order)
 - N³LO (next-to-next-to-leading order)
 - ...

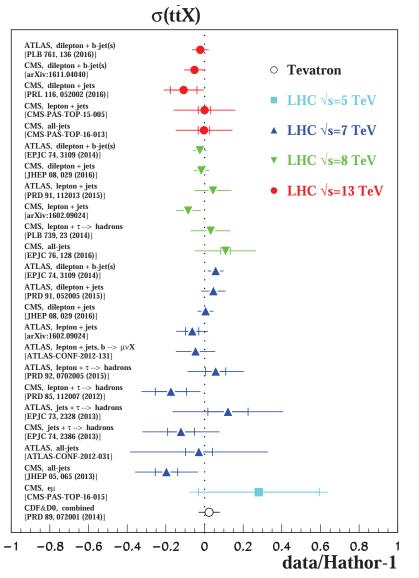

 $(\mathcal{O}(50 - 100\%))$ unc.)

 $(\mathcal{O}(10 - 30\%))$ unc.)

 $(\lesssim \mathcal{O}(10\%) \text{ unc.})$

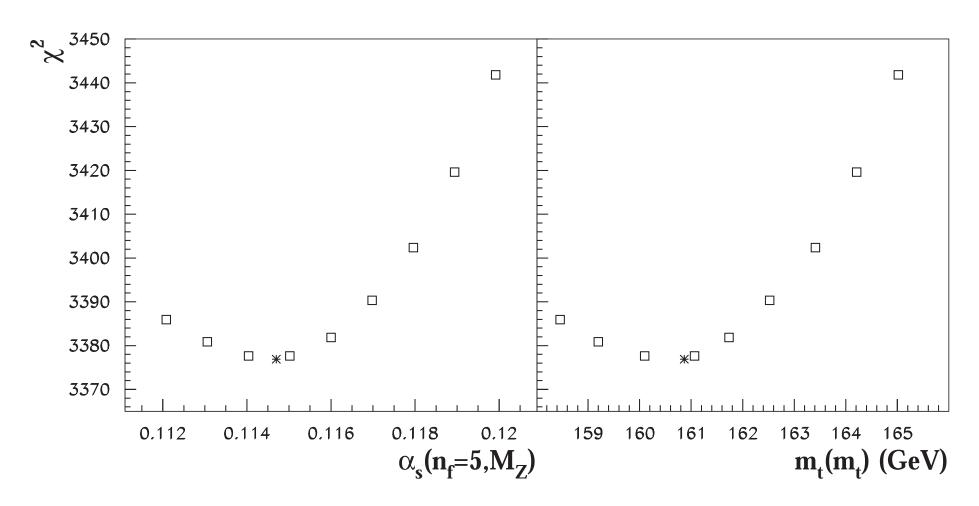
Parton luminosity

Long distance dynamics due to proton structure


lacktriangle Cross section depends on parton distributions f_i

$$\sigma_{pp o X} = \sum_{ij} \, f_i(\mu^2) \otimes \, f_j(\mu^2) \otimes \, iggl[\dotsiggr]$$

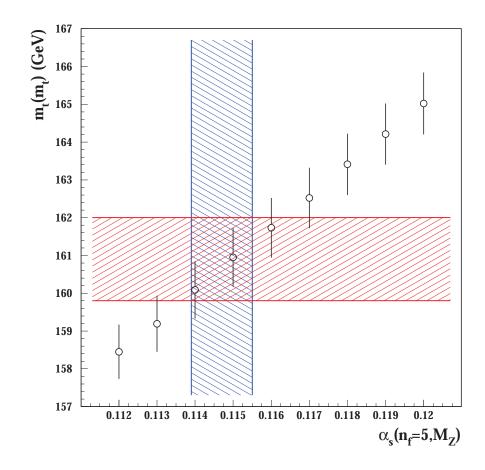
- Parton distributions known from global fits to exp. data
 - available fits accurate to NNLO
 - information on proton structure depends on kinematic coverage


Data on top-quark cross sections

• Pulls for $t\bar{t}$ -inclusive cross sections in ABMP16

Fit quality

- Goodness-of-fit estimator χ^2 for extracted $\alpha_s(M_Z)$ and $m_t(m_t)$ values
 - χ^2 of global fit with NDP = 2834
 - data on top-quark production with $NDP=36\,\mathrm{D0}$, ATLAS, CMS, LHCb



Sven-Olaf Moch

Discussion: Progress in theory – p.7

Correlations

• Correlations between gluon PDF g(x), $\alpha_s(M_Z)$ and $m_t(m_t)$

• Fits with fixed values of m_t and $lpha_S(M_Z)$ carry significant bias

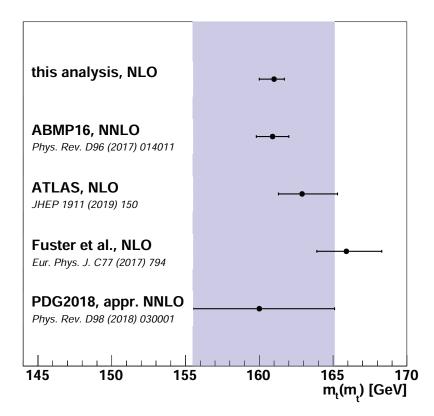
Data on top-quark cross sections (I)

• Correlated determination of PDFs , $\alpha_s(M_Z)$ and $m_t(m_t)$ using HERA DIS data and $t\bar{t}$ cross sections by CMS collaboration

Garzelli, Kemmler, S. M., Zenaiev '20

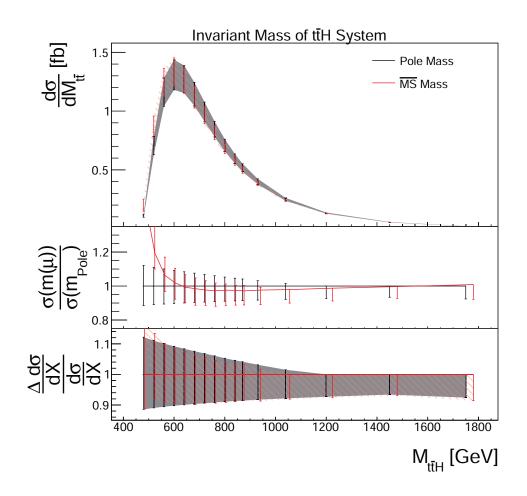
ansatz from HERAPDF for PDFs

Settings	Fit results
pole mass	$\chi^2/\text{dof} = 1364/1151, \chi^2_{t\bar{t}}/\text{dof} = 20/23$
$\mu_R = \mu_F = H'$	$m_t^{\text{pole}} = 170.5 \pm 0.7 \text{(fit)} \pm 0.1 \text{(mod)}_{-0.1}^{+0.0} \text{(par)} \pm 0.3 (\mu) \text{ GeV}$
CMS, arXiv:1904.05237	$\alpha_S(M_Z) = 0.1135 \pm 0.0016 (\text{fit})_{-0.0004}^{+0.0002} (\text{mod})_{-0.0001}^{+0.0008} (\text{par})_{-0.0005}^{+0.0011} (\mu)$
pole mass	$\chi^2/\text{dof} = 1363/1151, \chi^2_{t\bar{t}}/\text{dof} = 19/23$
$\mu_R = \mu_F = m_t^{\text{pole}}$	$m_t^{\text{pole}} = 169.9 \pm 0.7 \text{(fit)} \pm 0.1 \text{(mod)}_{-0.0}^{+0.0} \text{(par)}_{-0.9}^{+0.3} (\mu) \text{ GeV}$
this work	$\alpha_S(M_Z) = 0.1132 \pm 0.0016 (\text{fit})_{-0.0004}^{+0.0003} (\text{mod})_{-0.0000}^{+0.0003} (\text{par})_{-0.0008}^{+0.0016} (\mu)$
$\overline{ m MS}$ mass	$\chi^2/\text{dof} = 1363/1151, \chi^2_{t\bar{t}}/\text{dof} = 19/23$
$\mu_R = \mu_F = m_t(m_t)$	$m_t(m_t) = 161.0 \pm 0.6 \text{(fit)} \pm 0.1 \text{(mod)}_{-0.0}^{+0.0} \text{(par)}_{-0.8}^{+0.4} (\mu) \text{ GeV}$
this work	$\alpha_S(M_Z) = 0.1136 \pm 0.0016 (\text{fit})_{-0.0005}^{+0.0002} (\text{mod})_{-0.0001}^{+0.0002} (\text{par})_{-0.0009}^{+0.0015} (\mu)$
MSR mass, $R = 3 \text{ GeV}$	$\chi^2/\text{dof} = 1363/1151, \chi^2_{t\bar{t}}/\text{dof} = 19/23$
$\mu_R = \mu_F = m_t^{\text{MSR}}$	$m_t^{\text{MSR}} = 169.6 \pm 0.7 \text{(fit)} \pm 0.1 \text{(mod)}_{-0.0}^{+0.0} \text{(par)}_{-0.9}^{+0.3} (\mu) \text{ GeV}$
this work	$\alpha_S(M_Z) = 0.1132 \pm 0.0016 (\text{fit})_{-0.0004}^{+0.0003} (\text{mod})_{-0.0000}^{+0.0002} (\text{par})_{-0.0008}^{+0.0016} (\mu)$

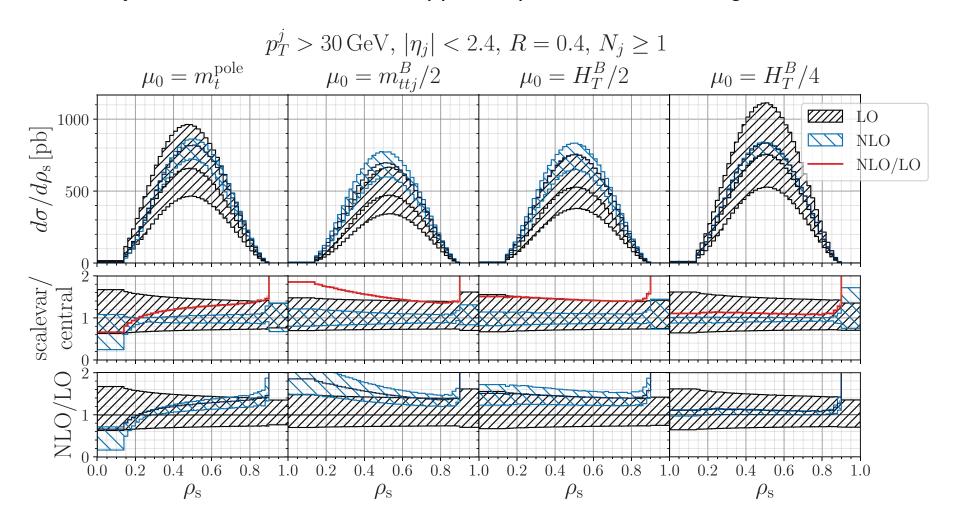

Table 1. The values for $\alpha_S(M_Z)$ and the top-quark mass in different mass schemes obtained in CMS, arXiv:1904.05237 and in this work by fitting the CMS data on $t\bar{t}$ production and the HERA DIS data arXiv:1506.06042 to theoretical predictions. The fit, model (mod), parametrisation (par) and scale variation (μ) uncertainties are reported. Also the values of χ^2 are reported, as well as the partial χ^2 values per number of degrees of freedom (dof) for the $t\bar{t}$ data ($\chi^2_{t\bar{t}}$) for 23 $t\bar{t}$ cross-section bins in the fit. The scale H' is defined in the text.

Data on top-quark cross sections (II)

• Extraction of $m_t(m_t)$ at NLO from differential $t\bar{t}$ cross-sections using data of CMS collaboration


Garzelli, Kemmler, S. M., Zenaiev '20

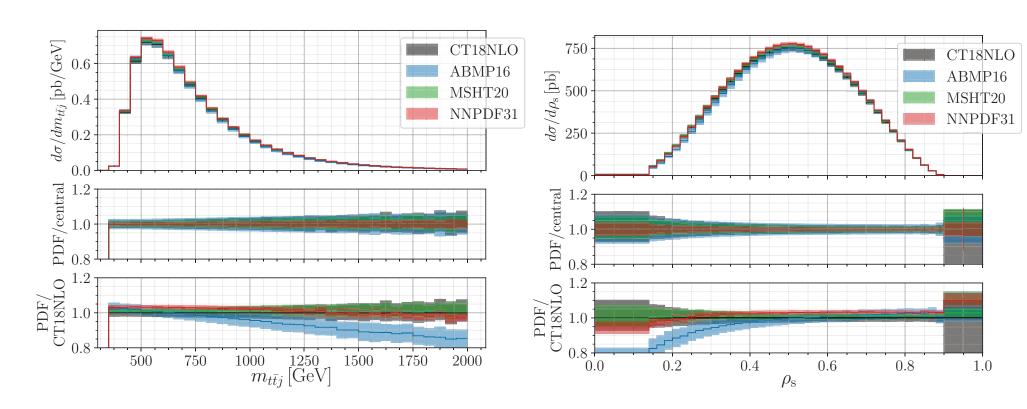
- value of $m_t(m_t)$ compared to other determinations
- world average labelled as PDG2018, appr. NNLO is based on a single determination of D0 collaboration


Theory predictions with running mass

- Theory predictions for $t\bar{t}H$ production with top quark \overline{MS} mass at NLO Saibel, S. M., Aldaya Martin '21
 - shape of differential distributions largely unaffected

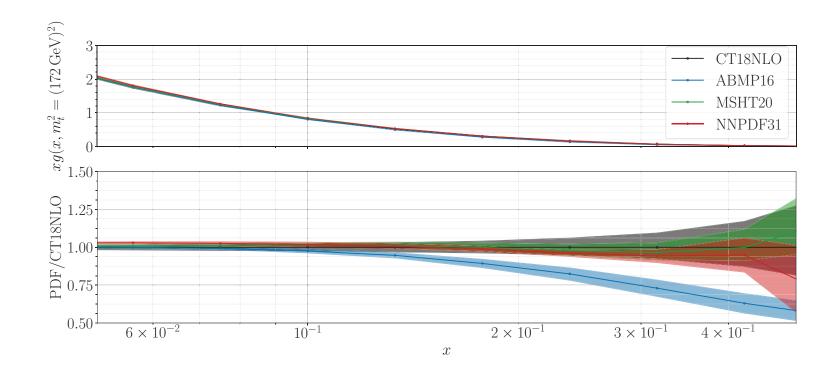
Phenomenology of $t\bar{t}j$ production at LHC

- Theory predictions for $t\bar{t}j$ production with different scale choices Alioli, Fuster, Garzelli, Gavardi, Irles, Melini, S. M., Uwer, Voß '22
 - dynamical scale with better apparent perturbative convergence



PDF dependence of $t\bar{t}j$ production

• Predictions for $m_{t\bar{t}j}$ (left) and ρ_s (right) distributions at LO computation with $\mu_0=H_T^B/4$


Alioli, Fuster, Garzelli, Gavardi, Irles, Melini, S. M., Uwer, Voß '22

PDF uncertainties of ABMP16, CT18, MSHT20 and NNPDF3.1 NLO sets

Gluon PDF

- PDFs sets ABMP16, CT18, MSHT20 and NNPDF3.1 at NLO for $Q^2=m_t^2=(172\,{\rm GeV})^2$
 - effective parton $\langle x \rangle \sim 2m_t/\sqrt{s} \sim 5 \cdot 10^{-2} \dots 10^{-1}$ for $m_{t\bar{t}j}$

Sven-Olaf Moch

Discussion: Progress in theory - p.14

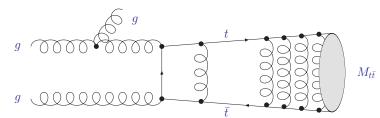
Progress in theory

Challenge

- Improve theory predictions and reduce theoretical uncertainty
 - ullet hard scattering cross section $\hat{\sigma}_{ij o X}$

Beyond NLO

- Scale uncertainties dominate theoretical uncertainties; need NNLO computations (very difficult)
- Focus on kinematical limits
 - soft and collinear kinematics
 - high energy (boosted) regime
 - Coulomb corrections


Threshold logarithms

- Sudakov logarithms in velocity $eta_{tar t}=\sqrt{1-4m^2/s}$ of heavy quarks or $eta_{tar t j}=\sqrt{1-m_{tar t j}^2/s}$ for tar t j-system
 - all order resummation of large logarithms $\alpha_s^n \ln^{2n}(\beta) \longleftrightarrow \alpha_s^n \ln^{2n}(N)$ in Mellin space (renormalization group equation) Kidonakis, Sterman '97; Bonciani, Catani, Mangano, Nason '98; Kidonakis, Laenen, S.M., Vogt '01; ...

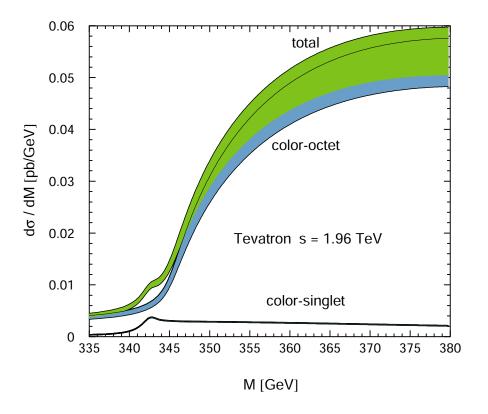
Sven-Olaf Moch

Coulomb corrections

- Heavy quark production very close to threshold
 - resummation of Coulomb corrections $\sim 1/\beta$ to all orders
 - factorization in non-relativistic QCD Bodwin, Braaten, Lepage '95
- ILC: much work (theory and phenomenology)
 - fixed center-of-mass energy S allows threshold scan at $\sqrt{S} \sim 2m_t$
 - ullet dominant color-singlet production $o tar t \left({}^3S_1^{[1]}
 ight)$
- LHC: effects on top-mass measurement Hagiwara, Sumino, Yokoya '08
 - complete NLO NRQCD result Petrelli, Cacciari, Greco, Maltoni, Mangano '97 (corrections by Hagiwara, Sumino, Yokoya '08)
 - NLL resummation Cacciari '99
 - detailed study in NRQCD assembling existing knowledge at NLO/NLL Kiyo, Kühn, S.M., Steinhauser, Uwer '08
 - Recent phenomenological update Wan-Li Ju, Guoxing Wang, Xing Wang, Xiaofeng Xu, Yongqi Xu,Li Lin Yang '20

Sven-Olaf Moch

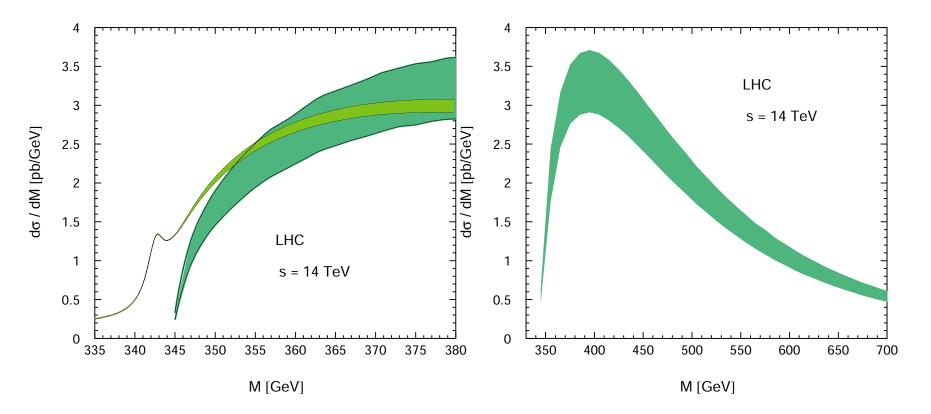
Discussion: Progress in theory – p.16


Coulomb corrections

- Recall master equation $\sigma_{pp o tar t} = \sum_{ij} f_i \otimes f_j \otimes \hat{\sigma}_{ij o tar t}$
- Convolution with PDFs $f_i \otimes f_j$
 - top-quark pairs produced as color-singlets and color-octets $o tar t\left({}^{2s+1}S_J^{[1,8]}
 ight)$
 - threshold at $M_{t\bar{t}}\sim 2m_t$ with $M_{t\bar{t}}=(p_t+p_{\bar{t}})^2$
- NRQCD factorization of partonic cross section into $\hat{\sigma}_{ij \to t\bar{t}} = F_{ij \to T} \otimes G(M_{t\bar{t}})$
 - free $t\bar{t}$ production rate F
 - ullet evolution factor into "boundstate" (Green's function) G
- Differential kinematics $\frac{d\hat{\sigma}_{ij o tar{t}}}{dM_{tar{t}}^2} = F_{ij o T} imes \Im G^{[1,8]}(M_{tar{t}})$
 - factorization of soft-collinear dynamics (real emission radiation)
 - matching at NLO and NLL resummation
- Effective theory formulation Beneke, Falgari, Schwinn '09; Beneke, Kiyo, Schuller '13

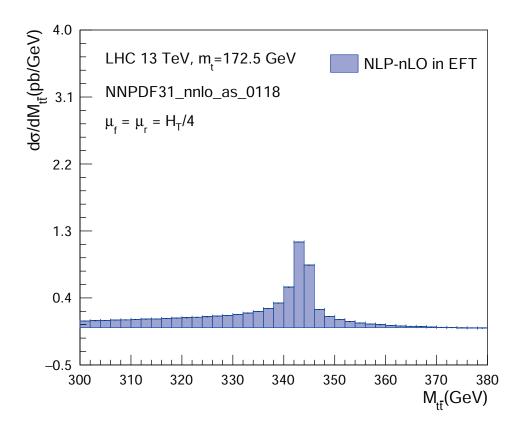
Invariant mass distristribution

- $d\sigma/dM_{t\bar{t}}$ at LHC driven by large gluon luminosity
 - $gg o t ar t \left({}^1S_0^{[1]} \right)$ dominates
- $d\sigma/dM_{t\bar{t}}$ at Tevatron with small bound state effects
 - $q\bar{q}$ -channel large with only color-octet configurations only
- Validity of Coulomb resummation restricted to $dM_{t\bar{t}} \geq 335~\text{GeV}$



Sven-Olaf Moch

Discussion: Progress in theory – p.18


Matching to fixed order

- $ullet \ d\sigma/dM_{tar t}$ with at LHC
 - compare NLL resummed result in NRQCD with (plain vanilla) NLO (use HVQMNR Mangano, Nason, Ridolfi '92 for matching)
 - consistency check OK
- Resolution of bound state effects in $d\sigma/dM_{t\bar{t}}$ at LHC difficult (requires rather fine binning)

Comment on 2004.03088

- Resummation effects in top quark mass determination with claimed shift of $m_t \sim 1.4 \; {\rm GeV}$
 - Wan-Li Ju, Guoxing Wang, Xing Wang, Xiaofeng Xu, Yonggi Xu, Li Lin Yang '20
- Contributions from resummation in region $300~{\rm GeV} \le M_{t\bar{t}} \le 380~{\rm GeV}$ at the $13~{\rm TeV}$ LHC

Summary

- Top mass extractions need to keep correlations with $lpha_s(M_Z)$ and with PDFs
 - fixing of gluon PDF g(x) and $\alpha_s(M_Z)$ may lead to bias
- Use of different mass schemes: \overline{MS} , MSR and on-shell schemes
 - ullet preference for short distance mass schemes \overline{MS} , MSR
- ullet Push QCD perturbation theory to NNLO for tar tH or tar tj+X production
 - generally very difficult: $2 \rightarrow 3$ processes with masses are beyond current state-of-the-art
 - progress in controlled kinematic limits (threshold, high-energy, . . .) feasible
- Coulomb corrections and their resummation
 - update of resummation studies at NLL for upcoming analyses