About Me

Background, past activities

Andreas Risch

Student at Heidelberg and Durham (UK): Physics & Mathematics

Doctoral student at the Institute for Nuclear Physics at Mainz Dissertation: Isospin breaking effects in hadronic matrix elements on the lattice

Since 2021: PostDoc at DESY Zeuthen

(John von Neumann-Institut for Computing NIC/Zeuthen Particle Physics Theory)

Research interests: Lattice QCD+QED, hadron spectroscopy & precision observables, lattice algorithmic improvements

Data analyst at DB Analytics at Frankfurt

(DB Mobility Logistics, Department for Transport Network Development and Transport Models)

My Current Work

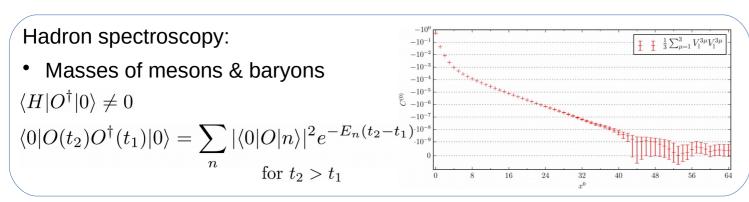
Activities and challenges

Lattice regularisation of the Euclidean path integral:

Rigorous, non-perturbative, gauge-invariant

 $\langle O[\Phi] \rangle = \frac{1}{Z} \int \prod_{x \in \Lambda} d\Phi(x) e^{-S[\Phi]} O[\Phi] \qquad \text{finite lattice spacing } a$ & finite lattice extent aN_{μ}

 $\Lambda = \{ x \in \mathbb{R}^4 | x^{\mu} = an^{\mu}, n^{\mu} \in \{0, 1, \dots, N^{\mu} - 1\} \}$


Field integration via Monte Carlo (MC) simulations

Investigation of isospin breaking (IB) effects:

MC simulations commonly for performed for QCD_{iso}

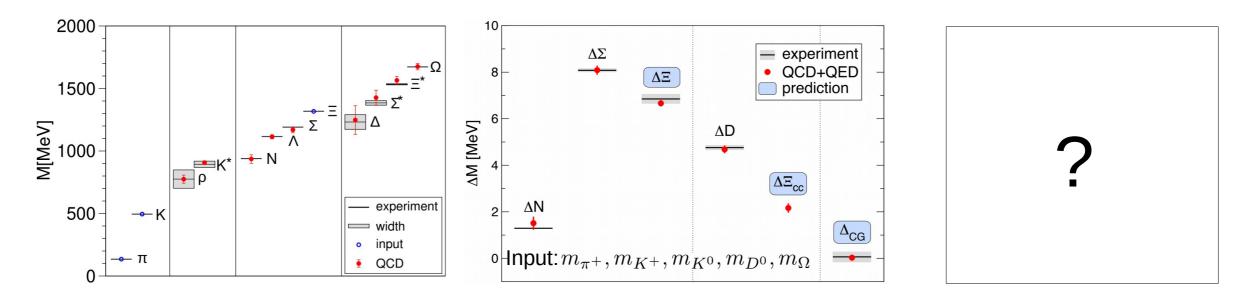
• IB effects:
$$\operatorname{QCD}_{iso} = 0$$
 \longleftrightarrow $\operatorname{QCD}_{u \neq 0} + \operatorname{QED}_{u \neq m_d, \alpha \neq 0}$

Relevant for hadronic precision observables with <1% error ٠

Hadronic precision observables: • Hadronic vacuum polarisation (HVP) contribution to $(g-2)_{\mu}$ $\vec{M} = g_{\mu} \frac{e}{2m_{\mu}} \vec{S}$ gyromagnetic ratio g_{μ} $a_{\mu} = \frac{g_{\mu} - 2}{2}$ 0.35 ppm $a_{\mu}^{\rm HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \mathrm{d}x^0 \, \widetilde{K}(x^0, m_{\mu}) \, \frac{1}{3} \sum_{i=1}^3 \int \mathrm{d}x^3 \, \langle 0 | \mathcal{V}_{\mu}^{\gamma}(x) \mathcal{V}_{\mu}^{\gamma}(0) | 0 \rangle$ LM20 BMW20 ↑ not yet in WP ETM18/19 Mainz/CLS19 FHM19 PACS19 **RBC/UKQCD18** \sim BMW17 **RBC/UKQCD** data/lattice BDJ19 Related observables: .117 not used in WP2 • $\alpha(q^2)$, $\sin^2\theta_W(q^2)$ DHMZ19 **KNT19 WP20** 1000 HVP -40 -30 -20 -10 0 10 $(a_{\mu}^{\text{SM}}-a_{\mu}^{\text{exp}}) \times 10^{10}$

Improvement of lattice actions:

- Reduce lattice artefacts?
- Increase algorithmic stability?


Study influence of gradient flow smearing:

How much smearing is too much smearing?

Study modifications of lattice Dirac operator

My Favourite Plot(s)

Or the one question you always wanted to ask!

From: Science 322 (2008) 1224-1227 "Ab-Initio Determination of Light Hadron Masses"

 $m_N = 0.936(25)(22) \,\mathrm{GeV}$

3.5% relative error

From: Science 347 (2015) 1452-1455 "Ab initio calculation of the neutron-proton mass difference"

 $m_n - m_p = 1.51(16)(23) \,\mathrm{MeV}$

 $m_n =?$ $m_p =?$

