

Ptarmigan status update

Tom Blackburn Department of Physics, University of Gothenburg

9 May 2022 LUXE Simulation, Analysis and Software

Ptarmigan status update Interactions with linearly polarized (LP) lasers

Electron + laser

Nonlinear Compton scattering

Signals:

GOTHENBURG

- Intensity dependence of Compton edges
- γ -photon angular profile

Needed:

Photon emission rate (LMA, LP)

Bremsstrahlung γ + laser

Nonlinear Breit-Wheeler pair production $\gamma(k)$

 $e^{+}(p_{+})$

Signals:

• Intensity dependence of positron yield

Needed:

 Pair creation rate (LMA, LP), unpolarized γ photons

Electron + laser

Nonlinear trident pair creation

Signals:

 Intensity dependence of positron yield

Needed:

- Photon emission rate (LMA, LP), γ-polarization resolved
- Pair creation rate (LMA, LP), γ-polarization resolved

Ptarmigan status update Interactions with linearly polarized (LP) lasers

Electron + laser

Nonlinear Compton scattering

Signals:

UNIVERSITY C

GOTHENBURG

- Intensity dependence of Compton edges
- γ-photon angular profile

Needed:

Photon emission rate (LMA, LP)

Bremsstrahlung γ + laser

Nonlinear Breit-Wheeler pair production $\gamma(k)$

 $e^{+}(p_{+})$

.

- Signals:
- Intensity dependence of positron yield

Needed:

 Pair creation rate (LMA, LP), unpolarized γ photons

Electron + laser

Nonlinear trident pair creation

Signals:

 Intensity dependence of positron yield

Needed:

- Photon emission rate (LMA, LP), γ-polarization resolved
- Pair creation rate (LMA, LP), γ-polarization resolved

Ptarmigan status update Interactions with linearly polarized (LP) lasers

Electron + laser

Nonlinear Compton scattering

Signals:

UNIVERSITY C

GOTHENBURG

- Intensity dependence of Compton edges
- γ-photon angular profile

Needed:

Photon emission rate (LMA, LP)

Bremsstrahlung γ + laser

Nonlinear Breit-Wheeler pair production $\gamma(k)$

 $e^{+}(p_{+})$

Signals:

 Intensity dependence of positron yield

Needed:

 Pair creation rate (LMA, LP), unpolarized γ photons

Electron + laser

Nonlinear trident pair creation

Signals:

 Intensity dependence of positron yield

Needed:

- Photon emission rate (LMA, LP), γ-polarization resolved
- Pair creation rate (LMA, LP), γ-polarization resolved

Ptarmigan status update Nonlinear Compton scattering in LP backgrounds

- Implemented photon emission in LP lasers
 - Under LMA, accurate over full range of $\boldsymbol{\xi}$
 - And LCFA, accurate for $\xi > 5..10$
 - Resolved in polarization of emitted γ 's and averaged over electron spins.
- Benchmarked against QED for monochromatic electrons + plane-wave laser pulses (data from Ben King and Suo Tang)

Ptarmigan status update Nonlinear Compton scattering in LP backgrounds

GOTHENBURG

- Data available for photon emission for phase-0 laser parameters, under /nfs/dust/luxe/MCProduction/Signal /ptarmigan-v0.9/e-laser/phase0/gbp
- NB: Files labelled by root-mean-square *ξ*, which differs from the peak *ξ* by a factor of sqrt(2).
- Results for LP and CP lasers at the same ξ are comparable, because laser spot size is the same.

Ptarmigan status update Nonlinear Compton scattering in LP backgrounds

- Transition from perturbative to nonperturbative visible in γ-ray angular profiles
- Dipolar for small ξ (elongated perpendicular to laser polarization)
- Increasingly elliptical + elongated along the polarization direction as ξ increases
- Comparison to earlier LCFA results needed

Ptarmigan status update Nonlinear Breit-Wheeler in LP backgrounds

GOTHENBURG

kinks/steps in rate originate from additional harmonics crossing the centre of mass threshold ("channel opening")

- Implementation of pair creation rates (under LMA, LP lasers) underway.
- LCFA rates already available, likely to be accurate in high ξ regime.
- Polarization-resolved rates unnecessary for CP backgrounds.
- Needed for LP backgrounds, where the correction is 10-20% in size.

- Simulations of interactions with linearly polarized lasers require implementations of:
 - Photon emission, γ-polarization resolved (e-laser): complete
 - Pair creation, γ -polarization averaged (brem γ -laser): WIP
 - Pair creation, γ -polarization resolved (*e*-laser)
- Benchmarking with QED indicates good accuracy across the necessary range of ξ .
- For gamma profiler, now possible to compare more accurate LMA-based simulations with earlier LCFA-based results.