Gravitational Focusing of Wave Dark Matter.

DESY THEORY WORKSHOP 2022 Higgs, Flavor and Beyond DESY, Hamburg 29/09/2022

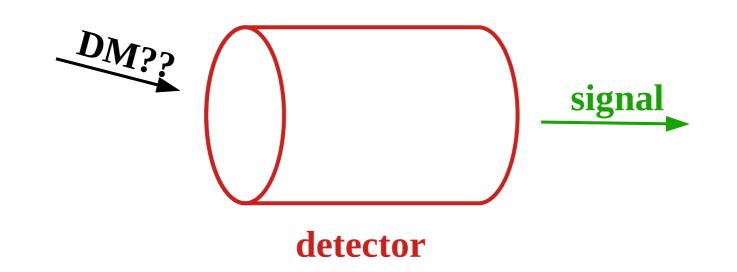
Alessandro Lenoci

Hyungjin Kim, AL [2112.05718] - PRD 105 (2022) 6, 063032

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

2112.05718

DM Direct Detection



How much DM is there around us? signal total power or rate
 Which are its kinematic properties? signal spectral shape

DM Direct Detection

The Standard Halo Model*

$$\rho_0 f(\mathbf{v}) = \frac{\rho_0}{(2\pi\sigma^2)^{3/2}} \exp\left[-\frac{(\mathbf{v} - \mathbf{v}_{\rm dm})^2}{2\sigma^2}\right]$$

$$\mathbf{v}_{\rm dm} = -\mathbf{v}_{\odot} = -(11, 241, 7) \text{ km/sec}$$

$$\sigma = v_C(R_{\odot})/\sqrt{2} = 162 \text{ km/sec}$$

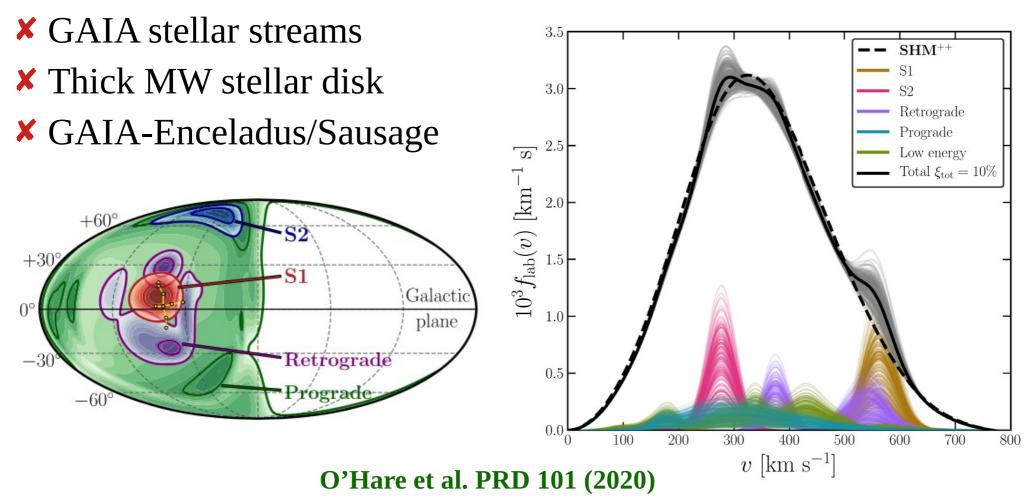
$$\rho_0 = 0.3 \div 0.4 \text{ GeV/cm}^3$$

Pros:

SimpleReasonably accurate

* In the Sun rest frame & galactic coordinates

NO local **DM substructures**, but hints from **stellar clusters DM** usually **shares** the **stellar kinematic properties**

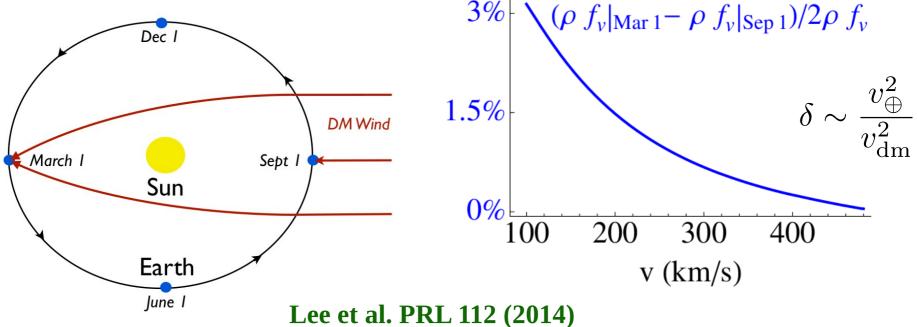


Cons:

Cons:

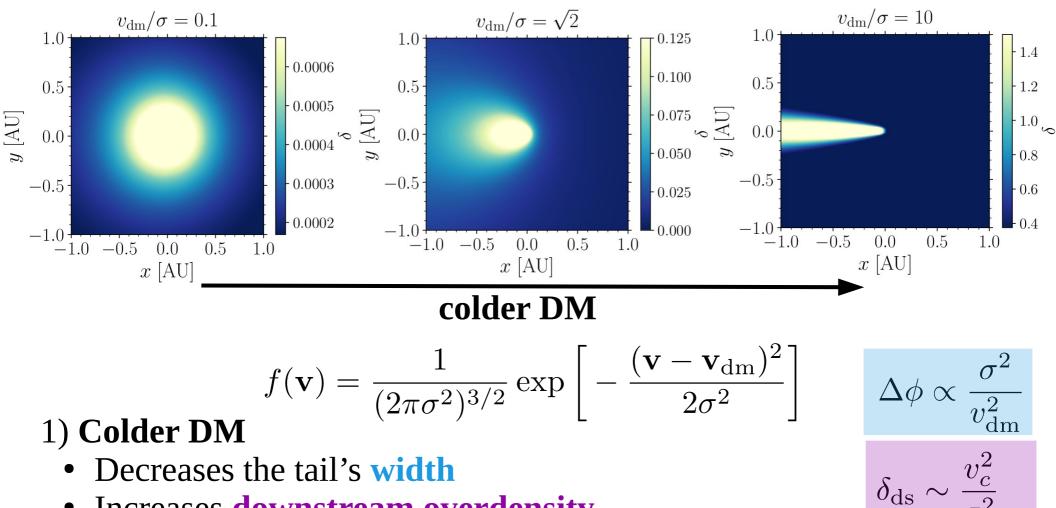
Doesn't account for **gravity distortions** of local DM distribution

- **×** Rate **modulation** effects
- **×** Spectral shape **deformations**



Studied for **WIMP-like (particle) DM** but **not** for **(ultra)-light wave DM**

Particle Gravitational Focusing



- Decreases the tail's width
- Increases downstream overdensity
- 2) Focusing is **independent** on the **DM mass** (F/m effect)
- 3) Density contrast **divergent** at the origin

 $\delta_{ds} \sim$

 v_c

2112.05718

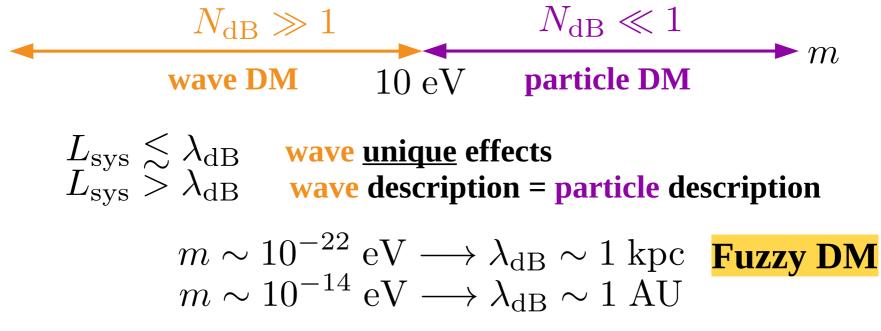
Particle vs Wave DM

de Broglie wavelength

Particles in a de Broglie volume

$$\lambda_{\rm dB} = \frac{2\pi}{mv}$$
$$N_{\rm dB} = \frac{(2\pi)^3 \rho}{m^4 v^3}$$

 n_{π}



Wave DM & gravity

We consider a **light scalar boson** in a static **Newtonian potential**

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} m^2 \phi^2 \right]$$
$$ds^2 = \left(1 + \frac{2GM}{r} \right) dt^2 - \left(1 - \frac{2GM}{r} \right) d\mathbf{x}^2$$

Wave mode **non-relativistic** expansion

$$\hat{\phi}(t, \mathbf{x}) = \frac{1}{\sqrt{2mV}} \sum_{i} \left[\hat{a}_{i} \Psi_{i}(\mathbf{x}, t) e^{-imt} + \text{h.c.} \right]$$

Wave function: response of the field to gravity Annihilation operator: statistical properties of the field

Density operator

For a simple harmonic oscillator, $\hat{H} = \omega \hat{a}^{\dagger} \hat{a}$ We maximize **entropy** for fixed mean occupation number $\langle n \rangle$

$$S = -\mathrm{Tr}[\hat{\rho}\log\hat{\rho}]$$

In coherent state representation $\hat{a}|\alpha\rangle = \alpha |\alpha\rangle, \quad \alpha \in \mathbb{C}$

$$\hat{\rho} = \int d^2 \alpha \, \frac{1}{\pi \langle n \rangle} \exp\left[-\frac{|\alpha|^2}{\langle n \rangle}\right] |\alpha\rangle\langle\alpha|$$

Density operator

For a simple harmonic oscillator, $\hat{H} = \omega \hat{a}^{\dagger} \hat{a}$ We maximize **entropy** for fixed mean occupation number $\langle n \rangle$

$$S = -\mathrm{Tr}[\hat{\rho}\log\hat{\rho}]$$

In coherent state representation $\hat{a}|\alpha\rangle = \alpha |\alpha\rangle, \quad \alpha \in \mathbb{C}$

$$\hat{\rho} = \int d^2 \alpha \, \frac{1}{\pi \langle n \rangle} \exp\left[-\frac{|\alpha|^2}{\langle n \rangle}\right] |\alpha\rangle \langle \alpha|$$

Multi-mode DM field $1 \ll \langle n_i \rangle \propto f(\mathbf{v})$

$$\hat{\rho} = \prod_{i} \int d^{2} \alpha_{i} \left| P(\alpha_{i}) \right| \{\alpha_{i}\} \rangle \langle \{\alpha_{i}\} |$$

Ensemble averages

$$\langle \hat{\mathcal{A}}(\hat{a}_i, \hat{a}_j^{\dagger}) \rangle = \operatorname{Tr}[\hat{\rho}\hat{\mathcal{A}}] \propto \prod_k \int d^2 \alpha_k P(\alpha_k) \mathcal{A}(\alpha_k, \alpha_k^{\star}) \delta_{ij} + \mathcal{O}\left(\frac{1}{\langle n_k \rangle}\right)$$
$$\langle a_j^{\dagger} a_i \rangle = \delta_{ij} (\langle n_i \rangle + 1) \approx \langle a_i^{\dagger} a_j \rangle$$

Schrodinger equation

Klein-Gordon equation

$$(\Box + m^2)\phi = 0$$

Schrodinger equation

$$i\partial_t \Psi_i(t, \mathbf{x}) = \left[-\frac{1}{2m}\nabla^2 - \frac{\alpha_G}{r}\right]\Psi_i(t, \mathbf{x})$$

Fine structure constant Wave function

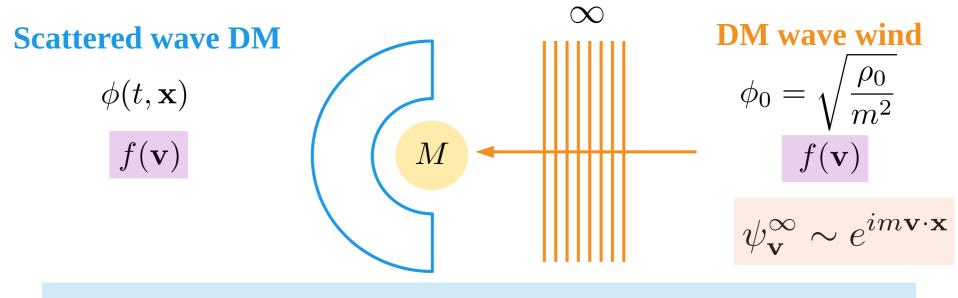
$$\alpha_G = GMm$$

$$\Psi_i = e^{-it\frac{\mathbf{k}_i^2}{2m}} \psi_{\mathbf{k}_i}(\mathbf{x}) \qquad \mathbf{k} = m\mathbf{v}$$

$$\left[\nabla^2 + (mv)^2 + \frac{2\alpha_G m}{r}\right]\psi_{\mathbf{v}} = 0$$

$$\psi_{\mathbf{v}} = e^{im\mathbf{v}\cdot\mathbf{x}}\Gamma(1 - i\alpha_G/v)e^{\frac{\pi}{2}\alpha_G/v} {}_1F_1[i\alpha_G/v, 1, imvr(1 - \hat{v}\cdot\hat{x})]$$

Wave Gravitational Focusing



$$\psi_{\mathbf{v}} = e^{im\mathbf{v}\cdot\mathbf{x}}\Gamma(1 - i\alpha_G/v)e^{\frac{\pi}{2}\alpha_G/v}{}_1F_1[i\alpha_G/v, 1, imvr(1 - \hat{v}\cdot\hat{x})]$$

Density contrast

$$\delta = \frac{\langle \phi^2 \rangle}{\phi_0^2} - 1 = \int d^3 v f(\mathbf{v}) (|\psi_{\mathbf{v}}(\mathbf{x})|^2 - 1) \propto \text{power oscillations}$$

Focused speed distribution

$$\Delta f(v) = v^2 \int d\Omega_v f(\mathbf{v}) (|\psi_{\mathbf{v}}(\mathbf{x})|^2 - 1) \quad \propto \text{ spectral distortions}$$

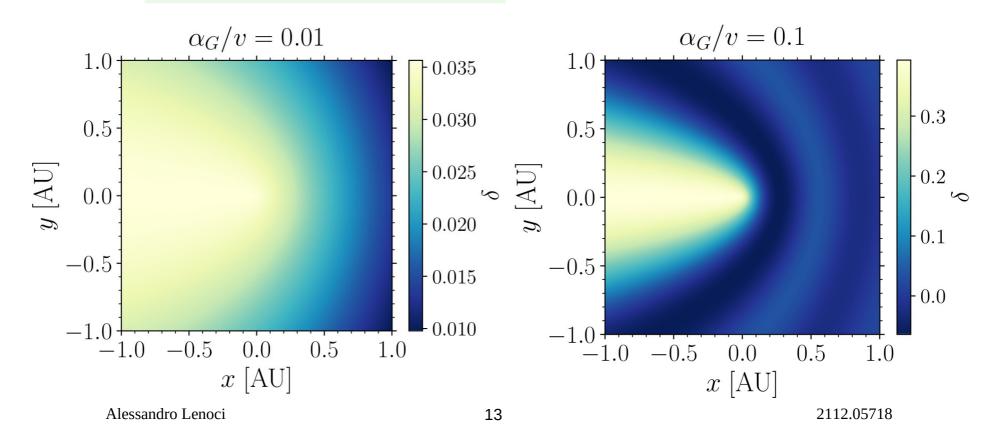
Alessandro Lenoci

Wave Gravitational Focusing

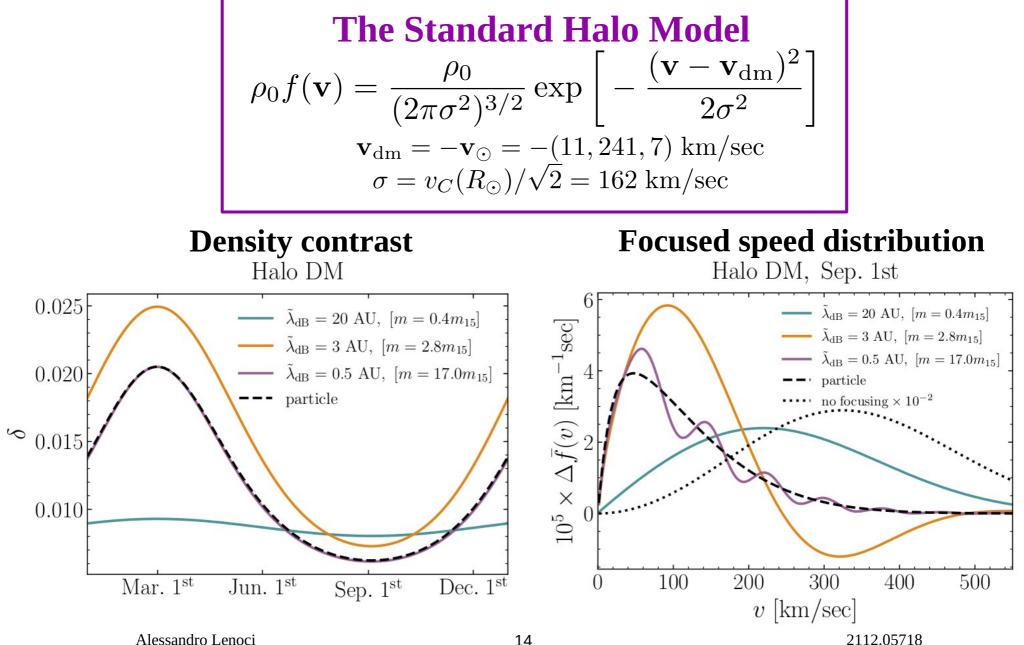
Assume $f(\mathbf{v}) = \delta^{(3)}(\mathbf{v} - \mathbf{v}')$, monochromatic DM $1 + \delta = |\psi_{\mathbf{v}}(\mathbf{x})|^2 = |\psi_{\mathbf{v}}(0)|^2 \times |{}_1F_1[i\alpha_G/v, 1, imvr(1 - \hat{v} \cdot \hat{x})]|^2$

$$|\psi_{\mathbf{v}}(0)|^2 = \frac{2\pi\alpha_G/v}{1 - e^{-2\pi\alpha_G/v}}$$

Sommerfeld factor



Application: Halo DM

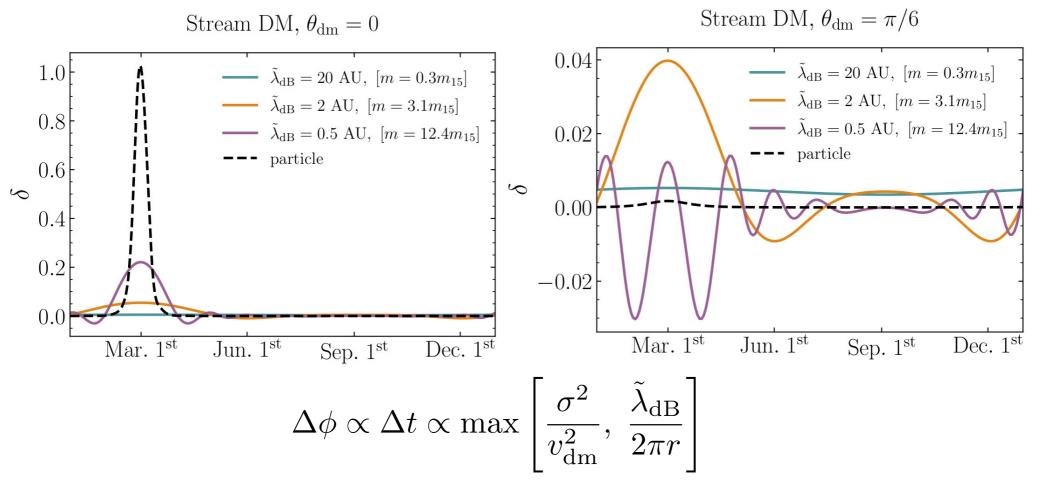


Application: Stream DM

- Dark component of stellar streams originated from dwarf galaxies
- High space & momentum **coherence**
- **Cold objects** with **large streaming velocity**

 $v_{\rm dm} = 400 \ \rm km/sec$

 $\sigma=30\;{\rm km/sec}$



Why Gravitational Focusing?

- While we still search for DM:
 - i. **Model independent** (it is a gravity effect)
 - ii. Correct modeling of **direct detection** signals at % level iii. Other systems sensitive to the effect (binaries?)
- Once we have detected DM:
 - i. Halo **parameter reconstruction**
 - ii. Mapping of **local DM substructures**

Focusing for Wave Dark Matter

Thanks!

alessandro.lenoci@desy.de

Backup slides

Two Questions

(1) Which are the wave effects ? (2) Do we retrieve particle focusing at $r \gg \lambda_{dB}$?

Assume $f(\mathbf{v}) = \delta^{(3)}(\mathbf{v} - \mathbf{v}')$, monochromatic DM $1 + \delta = |\psi_v(\mathbf{x})|^2 = |\psi_v(0)|^2 \times M(\dots)$ $|\psi_v(0)|^2 = \frac{2\pi\alpha_G/v}{1 - e^{-2\pi\alpha_G/v}} |$ Sommerfeld factor $\tilde{v}(r) = \sqrt{v^2 + 2GM/r}, \ \alpha_G/v = 1$ $\alpha_G/v = 0.1$ $\int_{2}^{0.3} |\psi_v(0)|^2 - \int_{2}^{0.3} |\psi_v(0)|^2 + \int_{2}^{0.3} |\psi_v(0)$ $\begin{array}{c|c} 10^{1} & \sim \frac{\tilde{v}(r)}{v} \\ |^{2}-1 \end{array} \times \pi(2\pi r)/\tilde{\lambda}_{\mathrm{dB}} \end{array}$ 1.0 0.5y [AU]0.0particle -0.5-0.0wave $r = \tilde{\lambda}_{\rm dB}/2\pi$ 10⁻¹ -1.0 $10^{-1}_{10^{-2}}$ 10^{1} -0.50.0 0.51.0 $r/(GM/v^2)$ x [AU]Alessandro Lenoci 19 2112.05718

Application: (3) Thick Dark Disk

- The **thick MW stellar disk** is made of stars accreted or heated through a merger
- Dark component **co-rotating** with Galactic disk, accreted by **dynamical friction**
- More generally: any **cold substructure** with **small mean velocity**

$$f(\mathbf{v}) = \frac{1}{(2\pi\sigma^2)^{3/2}} \exp\left[-\frac{(\mathbf{v} - \mathbf{v}_{\rm dm})^2}{2\sigma^2}\right] \qquad \mathbf{v}_{\rm dm} = (0, -50, 0) \text{ km/sec}$$

$$\sigma = 50 \text{ km/sec}$$

Disk DM
$$0.35$$

$$0.30$$

$$0.30$$

$$0.25$$

$$0.20$$

$$0.15$$

$$0.20$$

$$0.15$$

$$0.20$$

$$0.15$$

$$0.10$$

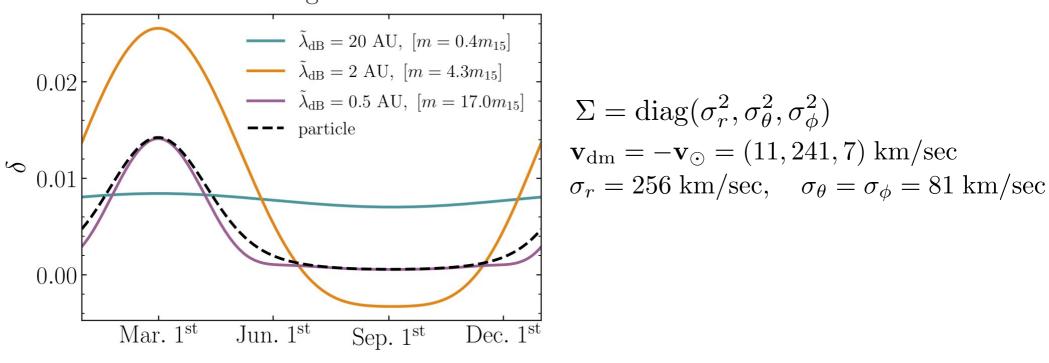
Mar. 1st Jun. 1st Sep. 1st Dec. 1st
2112.05718

Application: (4) GAIA-Enceladus DM

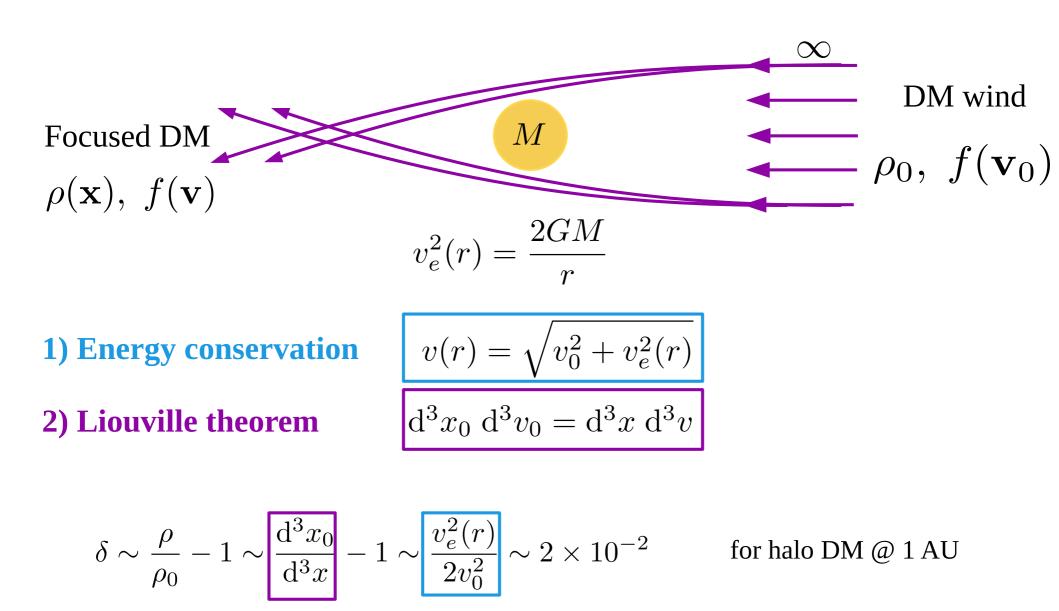
- GAIA observed a stellar population accreted through a recent merger.
- Anisotropic velocity structure, called sausage
- O(10%) ?? of local DM with similar kinematic properties

$$f(\mathbf{v}) = \frac{1}{(2\pi)^{3/2}\sqrt{\det\Sigma}} \exp\left[-\frac{1}{2}(\mathbf{v} - \mathbf{v}_{dm})\Sigma^{-1}(\mathbf{v} - \mathbf{v}_{dm})\right]$$

Sausage DM

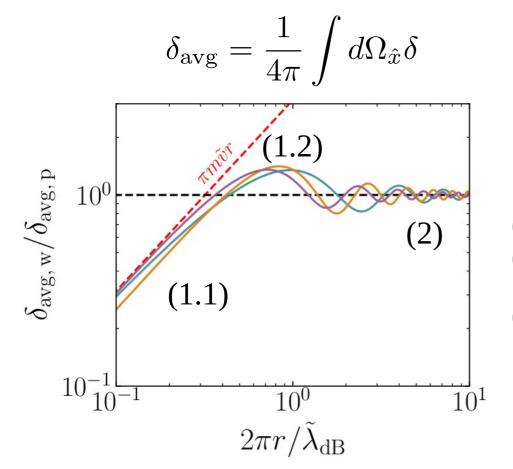


Particle Gravitational Focusing



Two Questions, rewind

(1) Which are the wave effects? (2) Do we retrieve particle focusing at $r \gg \lambda_{dB}$?



$$\tilde{\lambda}_{\rm dB} = \frac{2\pi}{m\tilde{v}} \qquad \tilde{v} = \sqrt{v^2 + v_e^2}$$

(1.1) Suppression within $m\tilde{v}r \ll 1$ (1.2) Small enhancement $m\tilde{v}r \approx 1$

(2) Agreement with particle $m\tilde{v}r \gg 1$

For non-monochromatic waves one can replace $\tilde{v} = \sqrt{v^2 + v_e^2 + \sigma^2}$

Semiclassical limit

For $r \gg \lambda_{dB}$ wave description should approach the particle one. $f_W(\mathbf{x}, \mathbf{p}) = \int d^3 y \, e^{i\mathbf{p}\cdot\mathbf{y}/\hbar} \int d^3 v \, f(\mathbf{v}) \psi_{\mathbf{v}}^{\star}(\mathbf{x} + \mathbf{y}/2) \psi_{\mathbf{v}}(\mathbf{x} - \mathbf{y}/2)$

Related to density contrast as

$$\langle \phi^2 \rangle = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} f_W(\mathbf{x}, \mathbf{p})$$

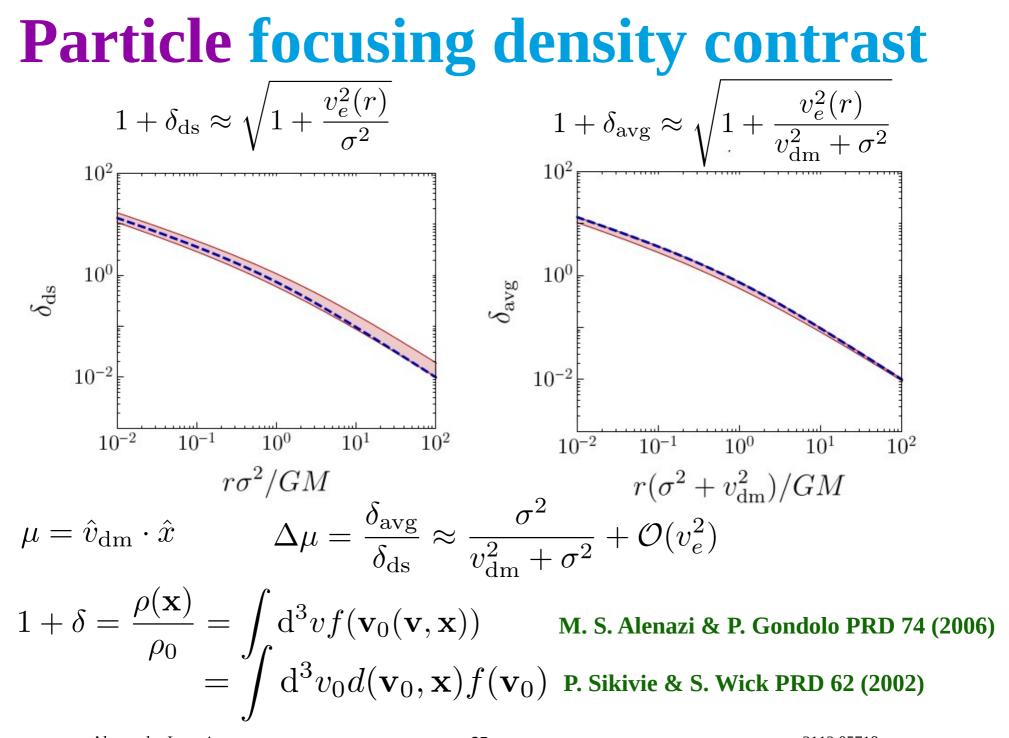
From the Schrodinger equation, we get

$$\left\{\partial_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} + \frac{i}{\hbar} \left[V(\mathbf{x} + \frac{i\hbar}{2} \nabla_{\mathbf{p}}) - V(\mathbf{x} - \frac{i\hbar}{2} \nabla_{\mathbf{p}}) \right] \right\} f_W = 0$$

This is actually the Boltzmann equation for $f(\mathbf{v})$ if

$$\hbar \to 0 \text{ or } |\mathbf{x}| \gg \lambda_{dB}$$

One can show that these conditions are equivalent



Alessandro Lenoci