Precise predictions for the trilinear Higgs self-coupling in the Standard Model and beyond

predicting κ_{λ} in any model at the one-loop order

Henning Bahl, Johannes Braathen, **Martin Gabelmann**, Georg Weiglein DESY Theory Workshop, 28.09.2022

The SM scalar sector

> $V_{\rm SM}$ fixed at tree-level by $m_h \approx 125 \, {\rm GeV}$ and $v = (\sqrt{2} G_F)^{-1/2} \approx 246 \, {\rm GeV}$:

$$egin{aligned} \mathcal{W}_{\mathsf{SM}}(h) &= rac{m_h^2}{2} h^2 + 3rac{m_h^2}{v} h^3 + 3rac{m_h^2}{v^2} h^4 \ &= rac{m_h^2}{2} h^2 + \lambda_{hhh} h^3 + \lambda_{hhhh} h^4 \end{aligned}$$

> However: λ_{hhh} (and λ_{hhhh}) experimentally unknown.

The SM scalar sector

> V_{SM} fixed at tree-level by $m_h \approx 125 \,\text{GeV}$ and $v = (\sqrt{2} G_F)^{-1/2} \approx 246 \,\text{GeV}$:

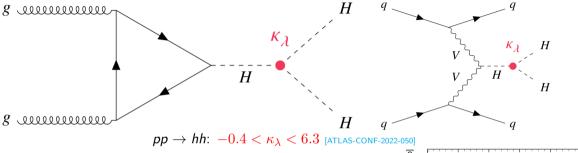
$$V_{SM}(h) = \frac{m_h^2}{2}h^2 + 3\frac{m_h^2}{v}h^3 + 3\frac{m_h^2}{v^2}h^4 = \frac{m_h^2}{2}h^2 + \lambda_{hhh}h^3 + \lambda_{hhhh}h^4$$

- > However: λ_{hhh} (and λ_{hhhh}) experimentally unknown.
- > BSM case: deformation of the scalar potential possible!

$$V_{\mathsf{BSM}}(h,\dots) = \frac{m_h^2}{2}h^2 + 3\frac{m_h^2}{v}\kappa_{\lambda}^{\mathsf{BSM}}h^3 + 3\frac{m_h^2}{v^2}\kappa_{2\lambda}h^4 + \dots$$

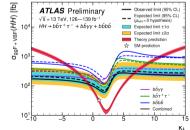
 $\kappa_{\lambda}^{\text{BSM}}$: describes deviation from SM: $\kappa_{\lambda}^{\text{BSM}} = \frac{\lambda_{hhh}^{\text{BSM}}}{\lambda_{hhh}^{\text{SM}}}$ in model "BSM". > $|\kappa_{\lambda}| \gg 1$ possible even though other (known) couplings behave very SM-like

Higgs pair production (in the alignment limit)



When to apply the κ_{λ} -constraint to BSM models?

- > only κ_{λ} is significantly modified by BSM physics
- > all other couplings SM-like
- \rightarrow in many models given by experimental constraints



Higher-order corrections to $\lambda_{hhh}^{\text{\tiny BSM}}$

A few studies of the trilinear Higgs self-couplings (i.e. κ_{λ}) already exists:

- > SM [Kanemura et al. '04]
- > SM + singlet [Kanemura et al. '16]
- > THDM[Kanemura et al. '04][Basler et al. '17][Braathen et al. '19]
- > THDM + singlet [Basler et al. '19]
- > Triplet extensions [Aoki et al. '18] [Chiang et al. '18]
- > MSSM [Brucherseifer et al. '13]
- > NMSSM [Dao et al. '13] [Dao et al. '15][Dao et al. '22 (tbp)]

of which many can have sizeable deviations from $\kappa_{\lambda}=1$ and hence also from $\sigma^{\rm SM}(hh)_{\rm [Abouabid et al. '21]}$

Higher-order corrections to $\lambda_{hhh}^{\rm \tiny BSM}$

A few studies of the trilinear Higgs self-couplings (i.e. κ_{λ}) already exists:

- > SM [Kanemura et al. '04]
- > SM + singlet [Kanemura et al. '16]
- > THDM[Kanemura et al. '04][Basler et al. '17][Braathen et al. '19]
- > THDM + singlet [Basler et al. '19]
- > Triplet extensions [Aoki et al. '18] [Chiang et al. '18]
- > MSSM [Brucherseifer et al. '13]
- > NMSSM [Dao et al. '13] [Dao et al. '15][Dao et al. '22 (tbp)]

of which many can have sizeable deviations from $\kappa_{\lambda} = 1$ and hence also from $\sigma^{\rm SM}(hh)_{\rm [Abouabid et al. '21]}$

However, there many more models to explore:

- > THDM-variants
- > singlet-variants
- > extended gauge sectors
- > extended fermion sectors
- > non-minimal SUSY, e.g. seesaw extensions, dirac gauginos, SplitSUSY, ...
- > (+ combinations)

> ...

Higher-order corrections to $\lambda_{hhh}^{\rm \tiny BSM}$

A few studies of the trilinear Higgs self-couplings (i.e. κ_{λ}) already exists:

- > SM [Kanemura et al. '04]
- > SM + singlet [Kanemura et al. '16]
- > THDM[Kanemura et al. '04][Basler et al. '17][Braathen et al. '19]
- > THDM + singlet [Basler et al. '19]
- > Triplet extensions [Aoki et al. '18] [Chiang et al. '18]
- > MSSM [Brucherseifer et al. '13]
- > NMSSM [Dao et al. '13] [Dao et al. '15][Dao et al. '22 (tbp)]

of which many can have sizeable deviations from $\kappa_{\lambda} = 1$ and hence also from $\sigma^{\text{SM}}(hh)_{\text{[Abouabid et al. '21]}}$

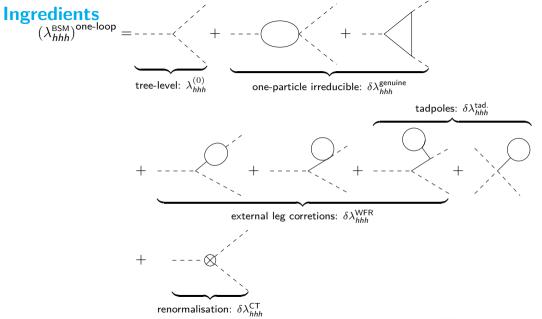
However, there many more models to explore:

- > THDM-variants
- > singlet-variants
- > extended gauge sectors
- > extended fermion sectors
- > non-minimal SUSY, e.g. seesaw extensions, dirac gauginos, SplitSUSY, ...
- > (+ combinations)

\rightarrow framework to calculate $\lambda_{hhh}^{\rm BSM}$ for large class of "BSM's"

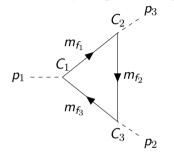
> ...

Ingredients

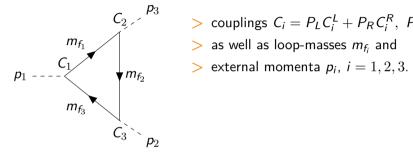


DESY. | Precise predictions for κ_{λ} in the Standard Model and beyond | Henning Bahl, Johannes Braathen, Martin Gabelmann, Georg Weiglein | DESY Theory Workshop, 28.09.2022 Page 5

Idea: compute generic diagrams i.e. assume most generic

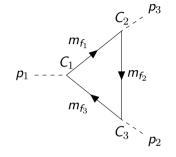


Idea: compute generic diagrams i.e. assume most generic



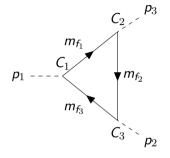
> couplings
$$C_i = P_L C_i^L + P_R C_i^R$$
, $P_{R/L} = \frac{1 \pm \gamma_5}{2}$

Idea: compute generic diagrams i.e. assume most generic



$$\begin{array}{l} \text{ couplings } C_i = P_L C_i^L + P_R C_i^R, \ P_{R/L} = \frac{1 \pm \gamma_5}{2} \\ \text{ as well as loop-masses } m_{f_i} \text{ and} \\ \text{ external momenta } p_i, \ i = 1, 2, 3. \\ = 2 \mathbf{B0} (p_3^2, m_2^2, m_3^2) (C_1^L (C_2^L C_3^R m_{f_1} + C_2^R C_3^R m_{f_2} + C_2^R C_3^L m_{f_3}) + C_1^R (C_2^R C_3^L m_{f_1} + C_2^L C_3^L m_{f_2} + C_2^L C_3^R m_{f_3})) + m_{f_1} \mathbf{C0} (p_2^2, p_3^2, p_1^2, m_1^2, m_3^2, m_2^2) ((C_1^L C_2^L C_3^R + C_1^R C_2^R C_3^L m_{f_1})) + m_{f_1} \mathbf{C0} (p_2^2, p_3^2, p_1^2, m_1^2, m_3^2, m_2^2) ((C_1^L C_2^L C_3^R + C_1^R C_2^R C_3^L) (p_1^2 + p_2^2 - p_3^2) + 2 (C_1^L C_2^L C_3^L + C_1^R C_2^R C_3^R) m_{f_2} m_{f_3} + 2 m_{f_1} (C_1^L (C_2^L C_3^R m_{f_1} + C_2^R C_3^R m_{f_2} + C_2^R C_3^R m_{f_3})) + \mathbf{C1} (p_2^2, p_3^2, p_1^2, m_1^2, m_3^2, m_2^2) (2 p_2^2 (C_1^L C_3^R (C_2^L m_{f_1} + C_2^R m_{f_2}) + C_1^R C_3^L (C_2^R m_{f_1} + C_2^L m_{f_2})) + (p_1^2 + p_2^2 - p_3^2) ((C_1^L C_2^L C_3^R + C_1^R C_2^R C_3^L) m_{f_1} + (C_1^L C_2^R C_3^L m_{f_1} + C_2^L m_{f_2})) + (p_1^2 + p_2^2 - p_3^2) ((C_1^L C_2^L C_3^R + C_1^R C_2^R C_3^L) m_{f_1} + (C_1^L C_2^R C_3^L + C_1^R C_2^L C_3^R) m_{f_3})) + \mathbf{C2} (p_2^2, p_3^2, p_1^2, m_1^2, m_3^2, m_2^2) ((p_1^2 + p_2^2 - p_3^2) (C_1^L C_3^R (C_2^L m_{f_1} + C_2^R m_{f_2}) + C_1^R C_3^L (C_2^R m_{f_1} + C_2^L m_{f_2})) + 2 p_1^2 ((C_1^L C_2^L C_3^R + C_1^R C_2^R C_3^L) m_{f_1} + (C_1^L C_2^R C_3^L m_{f_1} + C_2^R m_{f_2}) + C_1^R C_2^L C_3^R m_{f_3})) + \mathbf{C2} (p_2^2, p_3^2, p_1^2, m_1^2, m_3^2, m_2^2) ((p_1^2 + p_2^2 - p_3^2) (C_1^L C_3^R (C_2^L m_{f_1} + C_2^R m_{f_2}) + C_1^R C_2^L C_3^R m_{f_1}) + (C_1^L C_2^R C_3^L + C_1^R C_2^L C_3^R) m_{f_3})) + \mathbf{C2} (p_2^2, p_3^2, p_1^2, m_1^2, m_3^2, m_2^2) ((p_1^2 + p_2^2 - p_3^2) ((C_1^L C_2^L C_3^R + C_1^R C_2^R C_3^L m_{f_1} + (C_1^L C_2^R C_3^L + C_1^R C_2^L C_3^R) m_{f_3}))) \\ \end{array}$$

Idea: compute generic diagrams i.e. assume most generic



- insert concrete BSM model
 evaluate with the help of COLLIER[Denner et al. '16]
- > public code anyH3[Bahl,

Braathen, MG, Weiglein tbp]

> couplings $C_i = P_L C_i^L + P_R C_i^R$, $P_{R/L} = \frac{1 \pm \gamma_5}{2}$ > as well as loop-masses m_{f_i} and > external momenta p_i , i = 1, 2, 3. $= 2\mathbf{B0}(p_3^2, m_2^2, m_3^2)(C_1^L(C_2^L C_3^R m_{f_1} + C_2^R C_3^R m_{f_2} + C_2^R C_3^L m_{f_3}) + C_1^R(C_2^R C_3^L m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^L m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^L m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^L m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^R m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^R m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^R m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^R m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^R m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^R m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^R m_{f_1} + C_2^R C_3^R m_{f_2}) + C_2^R (C_2^R C_3^R m_{f_1} + C_2^R C_3^R m_{f_1}) + C_2^R (C_2^R C_3^R m_{f_1})$ $C_{2}^{L}C_{3}^{L}m_{f_{2}} + C_{2}^{L}C_{3}^{R}m_{f_{2}})) + m_{f_{1}}\mathbf{C0}(p_{2}^{2}, p_{2}^{2}, p_{1}^{2}, m_{1}^{2}, m_{2}^{2}, m_{2}^{2})((C_{1}^{L}C_{2}^{L}C_{3}^{R} + C_{2}^{L}C_{3}^{R}))$ $C_{1}^{R}C_{2}^{R}C_{2}^{L})(p_{1}^{2}+p_{2}^{2}-p_{3}^{2})+2(C_{1}^{L}C_{2}^{L}C_{3}^{L}+C_{1}^{R}C_{2}^{R}C_{3}^{R})m_{f_{2}}m_{f_{2}}+$ $2m_{f_2}(C_1^L(C_2^LC_3^Rm_{f_1}+C_2^RC_3^Rm_{f_2}+C_2^RC_3^Lm_{f_2})+C_1^R(C_2^RC_3^Lm_{f_1}+C_2^LC_3^Lm_{f_2}+C_2^LC_3^Lm_{f_2})$ $C_{2}^{L}C_{2}^{R}m_{f_{2}}))) + \mathbf{C1}(p_{2}^{2}, p_{2}^{2}, p_{1}^{2}, m_{1}^{2}, m_{2}^{2}, m_{2}^{2})(2p_{2}^{2}(C_{1}^{L}C_{2}^{R}(C_{2}^{L}m_{f_{2}} + C_{2}^{R}m_{f_{2}}) +$ $C_1^R C_2^L (C_2^R m_{f_1} + C_2^L m_{f_2})) + (p_1^2 + p_2^2 - p_2^2) ((C_1^L C_2^L C_2^R + C_1^R C_2^R C_2^L) m_{f_1} +$ $(C_1^L C_2^R C_3^L + C_1^R C_2^L C_3^R) m_{f_2}) + \mathbf{C2}(p_2^2, p_3^2, p_1^2, m_1^2, m_3^2, m_2^2)((p_1^2 + p_2^2 - p_1^2, m_1^2, m_2^2, m_2^2)))$ $(p_{1}^{2})(C_{1}^{L}C_{3}^{R}(C_{2}^{L}m_{f_{1}}+C_{2}^{R}m_{f_{2}})+C_{1}^{R}C_{3}^{L}(C_{2}^{R}m_{f_{1}}+C_{2}^{L}m_{f_{2}}))+2p_{1}^{2}((C_{1}^{L}C_{2}^{L}C_{3}^{R}+C_{2}^{L}m_{f_{2}}))+2p_{1}^{2}((C_{1}^{L}C_{2}^{L}C_{3}^{R}+C_{2}^{L}m_{f_{2}})))$ $C_1^R C_2^R C_3^L (m_{f_1} + (C_1^L C_2^R C_3^L + C_1^R C_2^L C_2^R) m_{f_2}))$

Feature list (so far) of anyH3

- > import/convert arbitrary UFO models
- > definition of renormalisation schemes

schemes.yml

renormalization_schemes:

0S:

```
mass_counterterms:
```

h1: OS

h2: OS

VEV_counterterm: OS MS:

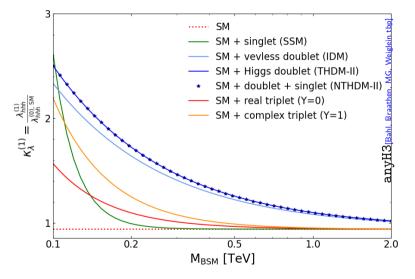
mass_counterterms: h1: MS h2: MS VEV counterterm: MS

- > optional: full p^2 dependence
- > numerical / analytical / <code>ETEX</code> outputs
- > restrict to certain topologies
- > restrict to certain particles in the loop

> python-library with command-line- and Mathematica-interface from anyBSM import anyH3 myfancymodel = anyH3('path/to/UFO/model', scheme = '0S') result = myfancymodel.lambdahhh()

...

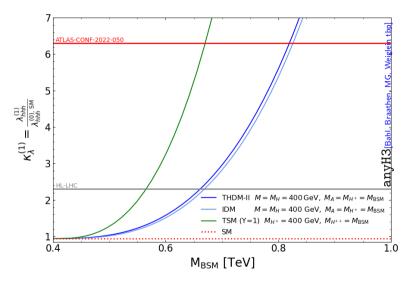
Decoupling in the alignment limit



- > alignment means $\kappa_{\lambda}^{\text{tree-level}} = 1$
- > recover SM result for $$M_{BSM} \rightarrow \infty$$
- > many models present and cross-checked
- > easy to implement new models (UFD)

DESY. | Precise predictions for κ_{λ} in the Standard Model and beyond | Henning Bahl, Johannes Braathen, Martin Gabelmann, Georg Weiglein | DESY Theory Workshop, 28.09.2022 Page 8

Non-decoupling in the alignment limit



- > mass spliting within the same multiplet
- > induces large couplings for $M_{BSM} \rightarrow \infty$
- corrections large-enough to exclude otherwise unconstrained parameter space
- > (see also talk by Johannes Braathen tomorrow)

DESY. | Precise predictions for κ_{λ} in the Standard Model and beyond | Henning Bahl, Johannes Braathen, Martin Gabelmann, Georg Weiglein | DESY Theory Workshop, 28.09.2022 Page 9

Summary

- > developed computer code anyH3 (anyBSM) for λ_{hhh} in arbitrary ren. QFTs
 - at the full one-loop order
 - with arbitrary choice of renormalization schemes
- > uses UFO input (generate with SARAH, FeynRules or use a custom one)
- > analytical results; fast numerical results; SM: $\mathcal{O}(0.2\,\mathrm{s})$, MSSM: $\mathcal{O}(0.5\,\mathrm{s})$
- > many models already implemented: SM, SM+singlet, THDM, NTHDM, various triplet extensions and MSSM
- > reproduced known results in the SM, SSM, THDM and TSM

Summary

> developed computer code anyH3 (anyBSM) for λ_{hhh} in arbitrary ren. QFTs

- at the full one-loop order
- with arbitrary choice of renormalization schemes
- > uses UFO input (generate with SARAH, FeynRules or use a custom one)
- > analytical results; fast numerical results; SM: $\mathcal{O}(0.2\,\mathrm{s})$, MSSM: $\mathcal{O}(0.5\,\mathrm{s})$
- > many models already implemented: SM, SM+singlet, THDM, NTHDM, various triplet extensions and MSSM
- > reproduced known results in the SM, SSM, THDM and TSM

Future ideas / todos:

- > publish
- > more models / cross-checks
- > go beyond one-loop
- > non-SM self-couplings (e.g. $\kappa_{\lambda_{Hhh}}$)
- $> \kappa_t$ and κ_{tt}

Backup

Another ingredient: Renormalisation of λ_{hhh}

- $>\,$ one-loop \rightarrow renormalisation of all parameters entering $\lambda_{hhh}^{(0),{\rm BSM}}$
- > reminder: $\lambda_{hhh}^{(0), SM} = 3 \frac{m_h^2}{v^2}$

 $> \rightarrow$ generalization (reminder: quasi-alignment!):

$$\lambda_{hhh}^{(0),\text{BSM}} \equiv \lambda_{hhh}^{(0),\text{BSM}}(\underbrace{v^{\text{SM}}, m_{h}^{\text{SM}}}_{\text{SM Higgs sector}}, \underbrace{m_{H_{i}}^{\text{BSM}}, v_{i}^{\text{BSM}}, \dots}_{\text{SM Miggs sector}}, \underbrace{m_{H_{i}}^{\text{BSM}}, v_{i}^{\text{BSM}}, \dots}_{\text{BSM masses}}$$

> user's choice:

couplings etc. (that can't be expressed in terms of masses)

 $\delta\lambda_{hhh}^{c\tau} = \cdots \otimes \left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right)^{c\tau} = ?$

- SM sector: fully OS or $\overline{\text{MS}}/\overline{\text{DR}}$
- BSM masses: OS or $\overline{MS}/\overline{DR}$
- additional couplings/vevs: most likely MS but also custom ren. conditions possible!

$$\delta \lambda_{hhh}^{CT} = \sum_{u} \frac{\partial \lambda_{hhh}^{(0),BSM}}{\partial x} \delta x, \ x = (m_h^{SM})^{OS/\overline{MS}}, (v^{SM})^{OS/\overline{MS}}, (m_{H_i}^{BSM})^{OS/\overline{MS}}, (\dots)^{\overline{MS}/custom}$$

DESY. | Precise predictions for κλ in the Standard Model and beyond | Henning Bahl, Johannes Braathen, Martin Gabelmann, Georg Weiglein | DESY Theory Workshop, 28.09.2022 Page 12

(Default) Renormalization choice of $(v^{SM})^{OS}$ and $(m_i^2)^{OS}$

>
$$v^{OS} \equiv \frac{2M_W^{OS}}{e} \sqrt{1 - \frac{M_W^{2OS}}{M_Z^{2OS}}}$$
 with
 $\cdot \delta^{(1)} M_V^{2OS} = \frac{\Pi_V^{(1),7}}{M_V^{2OS}} (p^2 = M_V^{2OS}), V = W, Z$
 $\cdot \delta^{(1)} e^{OS} = \frac{1}{2} \dot{\Pi}_{\gamma} (p^2 = 0) + \text{sign} (\sin \theta_W) \frac{\sin \theta_W}{M_Z^{2} \cos \theta_W} \Pi_{\gamma Z} (p^2 = 0)$
> attention (i): $\rho^{\text{tree-level}} \neq 1 \rightarrow \text{further CTs needed (depends on the model)}$
 $\rightarrow \text{ability to define custom renormalisation conditions}$
> scalar masses: $m_i^{OS} = m_i^{\text{pole}}$
 $\cdot \delta^{OS} m_i^2 = -\widetilde{\text{Re}} \Sigma_{h_i}^{(1)} |_{p^2 = m_i^2}$
 $\cdot \delta^{OS} Z_i = \widetilde{\text{Re}} \frac{\partial}{\partial p^2} \Sigma_{h_i}^{(1)} |_{p^2 = m_i^2}$

> attention (ii): scalar mixing may also require further CTs/tree-level relations

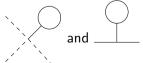
All bosonic one- & two-point functions and their derivatives for general QFTs are required for flexible OS renormalisation.

Tadpole contributions to λ_{hhh}

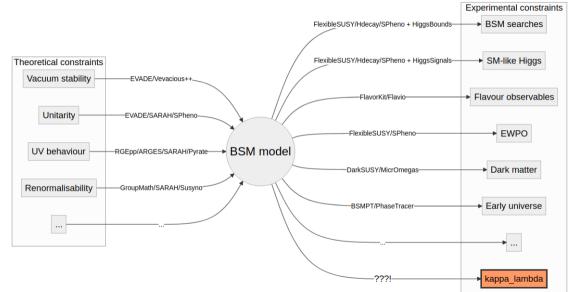
> In the SM: once λ_{hhh} is expressed in terms of *physical* input parameters, its result is independent of the treatment of the tadpoles:

$$\delta^{(1)}\lambda_{hhh} \supset -rac{3}{{m v}^2}\delta^{(1)}t_{\mathsf{finite}}$$

- However: UFD models do (often) not contain the explicit dependence on the tree-level/one-loop/one-loop-CT tadpoles.
- > Thus: we choose the Fleischer-Jegerlehner treatment $t^{\text{tree-level}} = 0$ and renormalize $\delta^{(1)}t^{\text{CT}}|_{\text{finite}} = 0$ in the $\overline{\text{MS}}$ scheme per default (can also turn-off automatic tadpoles and implement own scheme).
- \rightarrow only need to take into account tadpole contributions to all two- and three-point functions:

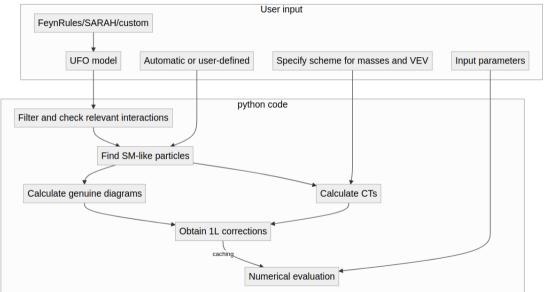


$\lambda_{\textit{hhh}}^{\scriptscriptstyle \rm BSM}$ in the landscape of generic BSM tool-boxes

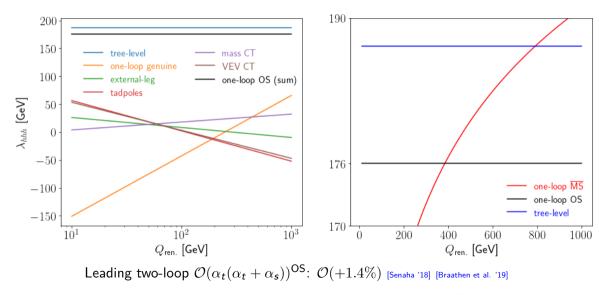


nesy | Precise predictions for κ χ in the Standard Model and beyond | Henning Bahl, Johannes Braathen, Martin Gabelmann, Georg Weiglein | DESY Theory Workshop, 28.09.2022 Page 15

Workflow



Simplest model to consider for cross-check: SM



DESY. | Precise predictions for κ_{λ} in the Standard Model and beyond | Henning Bahl, Johannes Braathen, Martin Gabelmann, Georg Weiglein | DESY Theory Workshop, 28.09.2022 Page 17

W Mass

> start with HO corrections to muon decay:
$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{\pi \alpha_{em}}{\sqrt{2} G_F} \left[1 + \Delta r\right]$$
> and solve for: $M_W^2 = M_Z^2 \left[\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\pi \alpha_{em}}{\sqrt{2} G_F M_Z^2}}(1 + \Delta r)\right]$
> with: $\Delta r^{(1)} = 2\delta^{(1)}e + \frac{\Pi_W^{(1),T}(0) - \delta^{(1)}M_W^2}{M_W^2} - \frac{\delta^{(1)}\sin^2\theta_W}{\sin^2\theta_W} + \delta_{vertex+box}$
> and: $\frac{\delta^{(1)}\sin^2\theta_W}{\sin^2\theta_W} = \frac{\cos^2\theta_W}{\sin^2\theta_W} \left(\frac{\Pi_W^{(1),T}(M_W^2)}{M_W^2} - \frac{\Pi_W^{(1),T}(M_W^2)}{M_W^2}\right)$

It's all there but:

>
$$\delta_{\text{vertex+box}}^{\text{SM}} = -\frac{2 \operatorname{sign}(\sin \theta_W)}{\cos \theta_W \sin \theta_W M_Z^2} \Pi_{Z\gamma}(p^2 = 0) + \frac{\alpha_{QED}}{4\pi \sin^2 \theta_W} \left(6 + \frac{7 - 4 \sin^2 \theta_W}{2 \sin^2 \theta_W}\right) \log(\cos^2 \theta_W)$$

 $> \delta^{\rm BSM}_{\rm vertex+box} = {\rm needs}$ to be implemented

However:

$$>$$
 in many models $\Delta r \supset rac{\delta \sin^2 heta_W}{\sin heta_W} pprox \delta
ho$ is the dominant effect!