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Where will we probably find a water molecule?
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Where will we probably find a water molecule?

Which object contains most likely a
water molecule?
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Higher marginal probability:
J p(TIM) = [ £(MIT) 2l
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Where will we probably find a water molecule?

Which object contains most likely a Where is the water molecule most
water molecule? likely located?
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Higher marginal probablhty) Higher profiled likelihood:
ip(T!M) fﬁ(M\T B max L(M| T)
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Today's Agenda

1. Considering a highly Gaussian data set
2. Comparing both methods for an augmented data set
3. Comparing both data sets

4. Conclusion
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Considering a highly Gaussian data set

No big difference for a highly Gaussian data set

(5} 0.5_4
S EEE S TSN FE .
% PhE! ! TETE |
= Z
I > W T Marginal 95% C.L. [0.3 =
| T Profiled 95% C.L.
Tl % h K G KK G, G L e Y

7. . R R o Rl =
? Y00 Yo Yo o %% %,

Nina Elmer Higgs, Flavor and Beyond, 29.09.22.



Considering a highly Gaussian data set

They are the same - aren't they?
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- Comparable results for both methods
- Small shifts in the peak
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Considering a highly Gaussian data set

The rather small impact of theory uncertainites
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- Consider different distributions for theory and statistical uncertainties
- Systematic uncertainties are always Gaussian distributed

— Little to no impact on the overall distribution
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Considering a highly Gaussian data set

Correlations are "game changers"
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- Correlating systematic uncertainties
- Correlations have an impact on the peak
— Responsible for shifting the distribution
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Comparing both methods for an augmented data set

Differences for an augmented data set

M

ﬁﬁﬁ 058

Marginal 95% C.L. |02
Profiled 95% C.L.

<+
w >~ ot

BR [%)

N

< /Q,J/f T %, %, /“@.{é@.{%@@_@'/‘@.{z‘;@
0o oSS AN
@ Yo Yo ,% 7, 4, ‘0, % % ‘e, %,

(4

©

0
i)

.

Nina Elmer

Higgs, Flavor and Beyond, 29.09.22.



Comparing both methods for an augmented data set

WW as one of a driving measurements

Data set includes a high kinematic distribution

Driving measurement in linked coefficients

Non-Gaussian measurement

Originally used for resonance searches
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Comparing both methods for an augmented data set

The problem with two modes
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- Clear difference between both methods
- Visible in the two mode structure

- Likelihood peaks are not on same level
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Comparing both methods for an augmented data set

The unexpected volume effect

- Peak structure appears with higher dimensional fits

- Need enough dimensions to accommodate underfluctuations
- More coefficients - larger volume effect
Strengthen limits on coefficients (marginal case only)
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Comparing both data sets

Comparing the results of both data sets
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Comparing the results of both data sets
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Conclusion

Different methods - different questions

- Different questions = different methods = different results

- Choosing a method means choosing a question

— They are not the same, but you might not see it at a first look

- Results might look similar for highly-Gaussian data set

- Results can look completely different for another data set
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Conclusion

SFitter - our tool of choice

- Choose between profiling and marginalization
- Strong uncertainty treatment
- Includes high kinematic distributions

— First SMEFT tool that provides these abilities
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