To Profile or To Marginalize: A SMEFT Case Study

Nina Elmer

Institut für Theoretische Physik, Universität Heidelberg

September 29, 2022

Collaborators:

Emma Geoffray, Michel Luchmann, Ilaria Brivio, Sebastian Bruggisser, Tilman Plehn (Heidelberg University)

arXiv: 2208.08454

Where will we probably find a water molecule?

Where will we probably find a water molecule?

Which object contains most likely a water molecule?

Where will we probably find a water molecule?

Which object contains most likely a water molecule?

Higher marginal probability: $\int_{T} p(T|M) = \int_{T} \mathcal{L}(M|T) \frac{P(T)}{P(M)}$

Where is the water molecule most likely located?

Higher profiled likelihood: $\max_{T} \mathcal{L}(M|T)$

Today's Agenda

- 1. Considering a highly Gaussian data set
- 2. Comparing both methods for an augmented data set
- 3. Comparing both data sets
- 4. Conclusion

No big difference for a highly Gaussian data set

They are the same - aren't they?

- Comparable results for both methods
- Small shifts in the peak

The rather small impact of theory uncertainites

- Consider different distributions for theory and statistical uncertainties
- Systematic uncertainties are always Gaussian distributed
- → Little to no impact on the overall distribution

Correlations are "game changers"

- Correlating systematic uncertainties
- Correlations have an impact on the peak
- → Responsible for shifting the distribution

Differences for an augmented data set

WW as one of a driving measurements

- Data set includes a high kinematic distribution
- Driving measurement in linked coefficients
- Non-Gaussian measurement
- Originally used for resonance searches

The problem with two modes

- Clear difference between both methods
- Visible in the two mode structure
- Likelihood peaks are not on same level

The unexpected volume effect

- Peak structure appears with higher dimensional fits
- Need enough dimensions to accommodate underfluctuations
- More coefficients larger volume effect
 Strengthen limits on coefficients (marginal case only)

Comparing the results of both data sets

Comparing the results of both data sets

Different methods - different questions

- Different questions ⇒ different methods ⇒ different results
- Choosing a method means choosing a question
- → They are not the same, but you might not see it at a first look
 - Results might look similar for highly-Gaussian data set
 - Results can look completely different for another data set

SFitter - our tool of choice

- Choose between profiling and marginalization
- Strong uncertainty treatment
- Includes high kinematic distributions
- → First SMEFT tool that provides these abilities