

Constraints on SMEFT operators using the missing energy + jet signature

Based on my master thesis supervised under Gudrun Hiller

Daniel Wendler **29.09.2022**

HIGGS, FLAVOR AND BEYOND

Standard model effective field theory (SMEFT)

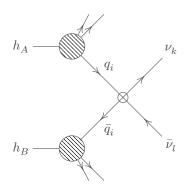
- Constructed using SM DOFs and gauge invariance under $SU(3)_c \times SU(2)_L \times U(1)_Y$
- lacksquare Scale separation between the process and the NP scale \varLambda
- Linearly realized EWSB

$$\mathcal{L}_{ extsf{SMEFT}} = \mathcal{L}_{ extsf{SM}}^{(4)} + \sum_{d=5} rac{C_i^{(d)} \ Q_i^{(d)}}{ ec{\Lambda}^{d-4}}$$

 $C_i^{(d)}:$ Wilson coefficients capture the UV physics

 $Q_i^{(d)}:$ Local operators build out of SM DOFs

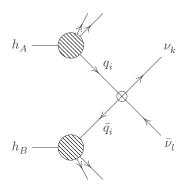
Semileptonic four-fermion operators


■ Focus on four-fermion operators coupling quarks and leptons

$$\begin{split} \mathcal{L}_{FF}^{6} &= \ \frac{C_{lq,klij}^{(1)}}{\varLambda^{2}} \left(\bar{l}_{k} \gamma_{\mu} l_{l} \right) \left(\bar{q}_{i} \gamma^{\mu} q_{j} \right) + \frac{C_{lq,klij}^{(3)}}{\varLambda^{2}} \left(\bar{l}_{k} \gamma_{\mu} \tau^{I} l_{l} \right) \left(\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j} \right) \\ &+ \frac{C_{lu,klij}}{\varLambda^{2}} \left(\bar{l}_{k} \gamma_{\mu} l_{l} \right) \left(\bar{u}_{i} \gamma^{\mu} u_{j} \right) + \frac{C_{ld,klij}}{\varLambda^{2}} \left(\bar{l}_{k} \gamma_{\mu} l_{l} \right) \left(\bar{d}_{i} \gamma^{\mu} d_{j} \right) \quad . \end{split}$$

Related to B-Anomalies and LFU

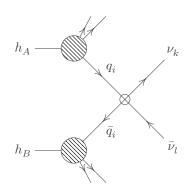
LO Drell-Yan in the SMEFT



$$\sigma_{BSM}(pp \to \nu_k \bar{\nu}_l) = \sum_{i,j} \int \frac{\mathrm{d}\tau}{\tau} \mathcal{L}_{ij}(\tau) \hat{\sigma}(\tau s)$$

- lacksquare Scaling variable: $au=\hat{s}/s$
- lacksquare Hard cross section : $\hat{\sigma}(\hat{s})$
- \blacksquare Parton luminosity functions: $\mathcal{L}_{ij}(\tau)$

LO Drell-Yan in the SMEFT


$$\sigma_{BSM}(pp \to \nu_k \bar{\nu}_l) = \sum_{i,j} \int \frac{\mathrm{d}\tau}{\tau} \mathcal{L}_{ij}(\tau) \hat{\sigma}(\tau s)$$

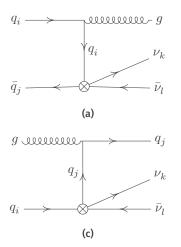
- lacksquare Scaling variable: $au=\hat{s}/s$
- lacksquare Hard cross section : $\hat{\sigma}(\hat{s})$
- \blacksquare Parton luminosity functions: $\mathcal{L}_{ij}(\tau)$

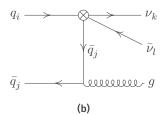
Dineutrino pair not detectable at the LHC

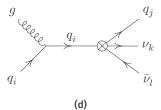
LO Drell-Yan in the SMEFT

$$\sigma_{BSM}(pp \to \nu_k \bar{\nu}_l) = \sum_{i,j} \int \frac{\mathrm{d}\tau}{\tau} \mathcal{L}_{ij}(\tau) \hat{\sigma}(\tau s)$$

- lacksquare Scaling variable: $au=\hat{s}/s$
- lacksquare Hard cross section : $\hat{\sigma}(\hat{s})$
- \blacksquare Parton luminosity functions: $\mathcal{L}_{ij}(\tau)$


Dineutrino pair not detectable at the LHC


 \Rightarrow extra radiation of a jet



Drell-Yan NLO

6

Missing energy spectrum

■ Final cross section will be incoherently summed over neutrino flavors

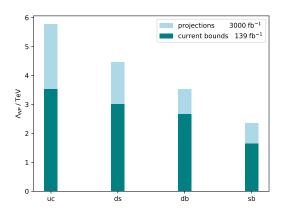
BSM differential cross section

$$\frac{\mathrm{d}\sigma(s,E_T^{miss})}{\mathrm{d}E_T^{miss}} = \sum_{i,j=a} C_{ij,eff}^2 \int \frac{\mathrm{d}\tau}{\tau} \left(f_1(\tau,E_T^{miss}) \mathcal{L}_{ij}(\tau) + f_2(\tau,E_T^{miss}) \mathcal{L}_{ig}(\tau) \right)$$

Limits can be calculated on effective WC

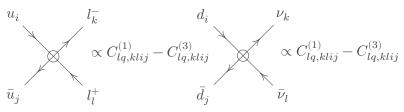
$$C_{ij,eff}^{2} = \sum_{k,l=\nu} |C_{lq,klij}^{\pm}|^{2} + |C_{lu/d,klij}|^{2}$$

lacktriangle Focus on offdiagonal quark WCs ($i \neq j$), where interference can be neglected.


Limits within the SMEFT

$C_{ij,eff}$	limits (139 ${\rm fb}^{-1}$)	projections (3000 ${\rm fb}^{-1}$)
uc	0.08	0.03
ds	0.11	0.05
db	0.14	0.07
sb	0.37	0.18

$$C_{ij,eff}^2 = \sum_{k,l=\nu} |C_{lq,klij}^{\pm}|^2 + |C_{lu/d,klij}|^2$$


NP scales constrained (C=1)

Connections to charged dilepton WCs

Left-chiral quark coefficients

Right-chiral quark coefficients

Limits within the WET: uc

cull'	ee	$\mu\mu$	au au	$e\mu$	$e\tau$	$\mu\tau$
$-{ \mathcal{K}_{L,R}^{cull'} _{DY}}$	2.9	1.6	5.6		4.7	
$ \mathcal{K}_{L,R}^{cull'} _D$	4.0	0.9	-	2.2	-	-
$ \mathcal{K}_{L,R}^{cull'} _D \ \mathcal{K}_{L}^{cull'} _{ uar u} \cdot$ 10 2	[-1.9,0.7]	[-1.9,0.7]	[-1.9,0.7]	1.1	1.1	1.1
$ \mathcal{K}_L^{cull'} _{ uar{ u}}^{pp}$	5.7	5.7	5.7	4.1	4.1	4.1
$ \mathcal{K}_R^{cull'} _{ uar{ u}}^{pp}$	4.2	4.2	4.2	2.9	2.9	2.9

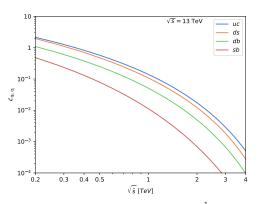
- Limits on the down sector (ds,db,sb) also possible
- Additionally left-chiral top couplings can be constrained

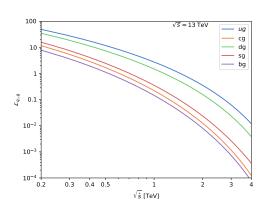
Summary

- The basic idea and potential of missing energy signatures was explained
- Constraints on semileptonic four-fermion operators were presented and compared to existing ones
- Overall they are of equal size compared to conventional Drell-Yan, but some constraints from decays are more stringent
- lacktriangle Models: Leptoquarks, Z'

Summary

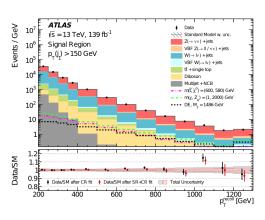
- The basic idea and potential of missing energy signatures was explained
- Constraints on semileptonic four-fermion operators were presented and compared to existing ones
- Overall they are of equal size compared to conventional Drell-Yan, but some constraints from decays are more stringent
- lacktriangle Models: Leptoquarks, Z'


Thank you for your attention!



BACKUP

Parton luminosity functions



$$\mathcal{L}_{ij}(\tau) = \tau \int_{\tau}^{1} \frac{\mathrm{d}x}{x} \left[f_{i}(x, \mu_{F}) f_{\bar{j}}(\tau/x, \mu_{F}) + i \Leftrightarrow j \right].$$

Dataset arXiv: 2102.10874

- The dataset considered was published by the ATLAS collaboration
- Run 2 data: $\mathcal{L}_{int} = 139 \, \text{fb}^{-1}$
- Projections assuming naive statical scaling of the data and uncertainties to $\mathcal{L}_{int} = 3000\,\mathrm{fb}^{-1}$
- $\begin{tabular}{ll} \hline \bf & The observable is a missing energy \\ E^T_{miss} & {\it spectrum} \\ \hline \end{tabular}$

Limits within the WET: down-sector

sdll'	ee	$\mu\mu$	$\tau\tau$	$e\mu$	$e\tau$	μτ
$ \mathcal{K}_{L,R}^{sdll'} _{DY}$	3.5	1.9	6.7	2.0	6.1	6.6
$\begin{split} \mathcal{K}_{L,R}^{sdll'} _{K} \cdot 10^{2} \\ \mathcal{K}_{R}^{sdll'} _{\nu\bar{\nu}} \cdot 10^{2} \end{split}$	5 [-1.9,0.7]	1.6 [-1.9,0.7]	- [-1.9,0.7]	6.6 1.1	1.1	1.1
$ \mathcal{K}_{L}^{sdll'} _{\nu\bar{\nu}}^{pp}$ $ \mathcal{K}_{R}^{sdll'} _{\nu\bar{\nu}}^{pp}$	4.2 5.7	4.2 5.7	4.2 5.7		2.9	2.9

bdll'	ee	$\mu\mu$	$\tau\tau$	$e\mu$	$e\tau$	$\mu\tau$
$ \mathcal{K}_{L,R}^{bdll'} _{DY}$ $ \mathcal{K}_{R}^{bdll'} _{B}$	5.0	2.7	9.6	3.1	9.6	11
$ \mathcal{K}_{R}^{bdll'} _{B}$	0.09	[-0.03, 0.03]	21	0.2	3.4	2.4
$ \mathcal{K}_L^{bdll'} _B$	0.09	[-0.07,-0.02]	21	0.2	3.4	2.4
$ \mathcal{K}_R^{bdll'} _{\nu\bar{\nu}}$	1.8	1.8	1.8	2.5	2.5	2.5
$ \mathcal{K}_{R}^{bdll'} _{\nu\bar{\nu}}^{pp}$	7.3	7.3	7.3	5.2	5.2	5.2

bsll'	ee	$\mu\mu$	$\tau\tau$	$e\mu$	$e\tau$	$\mu\tau$
$ \mathcal{K}_{L,R}^{bsll'} _{DY}$	13	7.1	25	8.0	27	30
$ \mathcal{K}_{R}^{bsll'} _{B_s}$ $ \mathcal{K}_{L}^{bsll'} _{B_s}$	0.04	[-0.03,-0.01]	32	0.1	2.8	3.4
$ \mathcal{K}_{L}^{bsll'} _{B_{o}}$	0.04	[-0.07,-0.04]	32	0.1	2.8	3.4
$ \mathcal{K}_{R}^{bsll'} _{\nu\bar{\nu}}$	1.4	1.4	1.4	1.8	1.8	1.8
$ \mathcal{K}_{R}^{bsll'} _{\nu\bar{\nu}}^{pp}$	19.3	19.3	19.3	13.6	13.6	13.6

Limits within the WET: top

tull'	ee	$\mu\mu$	au au	$e\mu$	$e\tau$	$\mu\tau$
$\frac{ \mathcal{K}_{L,R}^{tull'} }{ \mathcal{K}_{L}^{tull'} _{\nu\bar{\nu}}^{a}}$	~ 200	~ 200	n.a.	12	136	136
$ \mathcal{K}_L^{tull'} _{ uar{ u}}^a$	[-1.6,1.8]	[-1.6,1.8]	[-1.6,1.8]	2.4	2.4	2.4
$ \mathcal{K}_L^{tull'} _{\nu\bar{\nu}}^{pp}$	7.3	7.3	7.3	5.2	5.2	5.2

tcll'	ee	$\mu\mu$	au au	$e\mu$	$e\tau$	$\mu\tau$
$\frac{ \mathcal{K}_{L,R}^{tcll'} }{ \mathcal{K}_{L}^{tcll'} _{\nu\bar{\nu}}^{a}}$	~ 200	~ 200	n.a.	12	136	136
$ \mathcal{K}_L^{tcll'} _{ uar{ u}}^a$	[-1.9,0.9]	[-1.9,0.9]	[-1.9,0.9]	1.8	1.8	1.8
$ \mathcal{K}_L^{tcll'} _{\nu\bar{\nu}}^{pp}$	19.3	19.3	19.3	13.6	13.6	13.6

Cross section parametrization for dimension 6

$$\quad \blacksquare \ \mathcal{M} = \mathcal{M}_{SM} + \sum_i \mathcal{M}_{BSM,i}$$

$$\label{eq:mass_mass} \blacksquare \ \mathcal{M}_{BSM,i} \propto \frac{C_i}{\varLambda^2}$$

 $\sigma \propto |\mathcal{M}|^2$

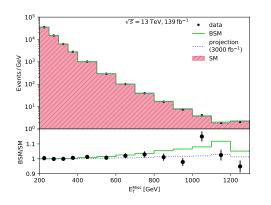
$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \sigma_{int,i} + \sum_{i,j} \frac{C_i C_j^*}{\Lambda^4} \sigma_{BSM,ij}$$

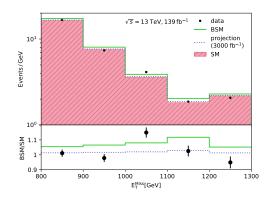
Operators in the Warsaw basis

	LLLL	LLRR			
$\begin{vmatrix} Q_{lq}^{(1)} \\ Q_{lq}^{(3)} \end{vmatrix}$	$ \begin{array}{c} \left(\bar{l}_p\gamma_\mu l_r\right) \left(\bar{q}_s\gamma^\mu l_r\right) \\ \left(\bar{l}_p\gamma_\mu\tau^I l_r\right) \left(\bar{q}_s\gamma^\mu\tau^I q_r\right) \end{array} $	$\begin{vmatrix} Q_{lu} \\ Q_{ld} \end{vmatrix}$	$\begin{array}{c} (\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t) \end{array}$		
	$\psi^2 X \varphi$	<u> </u>	$\psi^2 \varphi^2 D$		
Q_{uG}	$ (\bar{q}_p \sigma^{\mu\nu} T^A u_r \tilde{\varphi} G^A_{\mu\nu}) $	$Q_{\varphi l}^{(1)}$	$\left(\varphi^{\dagger}i\stackrel{\leftrightarrow}{D_{\mu}}\varphi\right)\left(\overline{l}_{p}\gamma^{\mu}l_{r}\right)$		
Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r \varphi G^A_{\mu\nu})$	$Q_{\varphi l}^{(3)}$	$ (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}) $		
Q_{uW}	$\bar{q}_p \sigma^{\mu\nu} u_r \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi u}$	$\left(\varphi^{\dagger}i\stackrel{\leftrightarrow}{D_{\mu}}\varphi\right)\left(\bar{u}_{p}\gamma^{\mu}u_{r}\right)$		
Q_{dW}	$\bar{q}_p \sigma^{\mu\nu} d_r \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$\left(arphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} arphi ight) \left(\bar{d}_{p} \gamma^{\mu} d_{r} \right)$		
Q_{uB}	$\bar{q}_p \sigma^{\mu\nu} u_r \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$\left(\varphi^{\dagger}i\stackrel{\leftrightarrow}{D_{\mu}}\varphi\right)\left(\bar{q}_{p}\gamma^{\mu}q_{r}\right)$		
Q_{dB}	$\bar{q}_p \sigma^{\mu\nu} d_r \varphi B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger}i\stackrel{\leftrightarrow}{D_{\mu}}\varphi\right)\left(\bar{q}_{p}\gamma^{\mu}q_{r}\right)$		

Simulation chain

Model Implementation: Feynrules: Smeftsim UFO model (arXiv:1310.1921)


Parton level Monte Carlo: MadGraph5 (arXiv:1106.0522)


Hadronisation: Pythia8 (arXiv:1410.3012)

Detector Simulation: Delphes (arXiv:1307.6346)

Simulated spectrum

Charge averaging

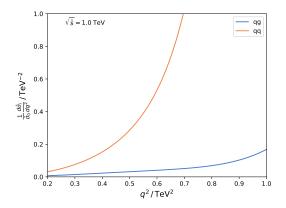
■ The Couplings that couple different lepton flavor are charge averaged

$$\overline{\mathcal{K}^{l+l'-}} = \sqrt{|\mathcal{K}^{l+l'-}|^2 + |\mathcal{K}^{l-l'+}|^2},$$

■ Based on 2007.05001

Hard cross sections

$$q_i \bar{q}_i \rightarrow \nu \bar{\nu} + g$$

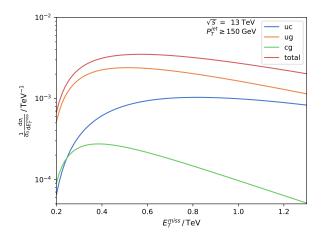

$$\frac{\mathrm{d}\hat{\sigma}_{q_i\bar{q}_j}}{\mathrm{d}q^2} = \frac{\alpha_s C_{ij,eff}^2 q^2}{108\pi^2 \hat{s}^2 (\hat{s} - q^2)} \bigg(4 \tanh^{-1} (1 - \delta) (q^4 + \hat{s}^2) + 2(\delta - 1) (q^2 - \hat{s})^2 \bigg)$$

$$q_i g \to \nu \bar{\nu} + q_i$$

$$\frac{\mathrm{d}\hat{\sigma}_{q_ig}}{\mathrm{d}q^2} = \frac{\alpha_s C_{ij,eff}^2 q^2}{288\pi \hat{s}^3} \left(\frac{\delta - 1}{2} (q^2 - \hat{s})(3q^2 + \hat{s}) + 2\tanh^{-1}(1 - \delta)(q^4 + (q^2 - \hat{s})^2) \right)$$

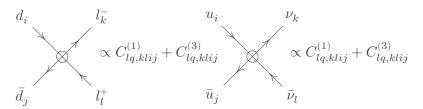
Parton level cross sections

24

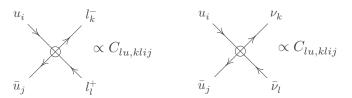

Total cross section

$$pp \to \nu \bar{\nu} + jet$$

$$\frac{\mathrm{d}\sigma(s,E_T^{miss})}{\mathrm{d}E_T^{miss}} = \sum_{i,j} \int \mathrm{d}\tau \, 2\sqrt{\frac{s}{\tau}} \bigg\{ \frac{\mathrm{d}\hat{\sigma}_{q_i\bar{q}_j}(\tau s,E_T^{miss})}{\mathrm{d}q^2} \mathcal{L}_{ij}(\tau) + \frac{\mathrm{d}\hat{\sigma}_{q_ig}(\tau s,E_T^{miss})}{\mathrm{d}q^2} 2\mathcal{L}_{ig}(\tau) \bigg\}.$$

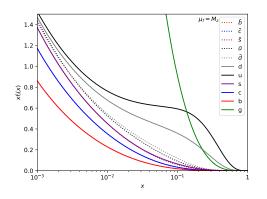


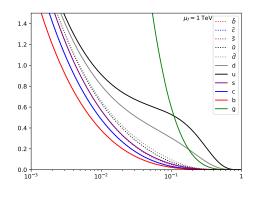
Hadronic cross section for ${\cal C}_{uc,eff}=1$



Left-chiral quark coefficients

Right-chiral quark coefficients




Matching

$$\begin{split} C_L^{U_{ijkl}} &= K_L^{D_{ijkl}} = \frac{2\pi v^2}{\alpha_e \Lambda_{NP}^2} \left(C_{lq_{klij}}^{(1)} + C_{lq_{klij}}^{(3)} \right) \\ C_L^{D_{ijkl}} &= K_L^{U_{ijkl}} = \frac{2\pi v^2}{\alpha_e \Lambda_{NP}^2} \left(C_{lq_{klpr}}^{(1)} - C_{lq_{ijpr}}^{(3)} \right) \\ C_R^{U_{ijkl}} &= K_R^{U_{ijkl}} = \frac{2\pi v^2}{\alpha_e \Lambda_{NP}^2} C_{lu_{klij}} \\ C_R^{D_{ijkl}} &= K_R^{D_{ijkl}} = \frac{2\pi v^2}{\alpha_e \Lambda_{NP}^2} C_{ld_{klij}}, \end{split}$$

PDFs

