Non-Hermitian tricriticality: a field theoretical approach

A. Miscioscia

Based on [AM, Takàcs, Lencsès, Mussardo; to appear]

Università

DEGLI STUDI

DI PADOVA

Motivations: Yang-Lee formalism

Basics

Consider the (analytic extension of the) partition function of a system at volume V:

$$\Omega_{V}(z) = \sum_{N=0}^{M} \frac{\mathcal{Z}_{N}(V)}{N!} z^{N} = \prod_{l=1}^{M} \left(1 - \frac{z}{z_{l}} \right),$$

The zeros play a role also in the thermodynamic limit: a density of zeros $\eta(z)$ can be studied!!

Motivations: Yang-Lee formalism

Ising model

Consider the Ising model:

$$H = J \sum_{\langle i,j \rangle} s_i s_j + h \sum_i s_i , \qquad s_i \in \{-1,1\}$$
$$z = e^{-\beta h} = e^{i\theta}$$

Distribution of the zeros in the T.L.:

In the red points:

Critical Point!!

[Yang,Lee,'52; Lee-Yang,'52]

Motivations: Yang-Lee formalism

The moral

• There is a critical point when an imaginary magnetic field is switched on!!

History of the critical point:

- The critical point was discussed from the lattice point of view; [Kortman, Griffiths,'71]
- The Ginzburg-Landau Lagrangian is known [Fisher,'78]
- The CFT that controls the critical point is known; [Cardy,'85]
- Numerical checks are present in literature.

Our question

What about the Tricritical Ising?

 The existence of a critical point was studied in the lattice formulation;

[von Gehlen,'94]

- We don't know the Ginzburg-Landau Lagrangian
- We don't know which is the CFT that controls the critical point

The Plan

- Review of main results in 2D CFTs
- Review of the Ising case (but using our tools)
- Some results on the Tricritical Ising
- Conjetures on non-Hermitian multicritical points

The Plan

- Review of main results in 2D CFTs
- Review of the Ising case (but using our tools)
- Some results on the Tricritical Ising
- Conjetures on non-Hermitian multicritical points

Renormalization group and CFTs

In the space of quantum field theories, the fixed points of the renormalization group flow are either conformal field theories (CFTs) or trivial theories

[Zamolodchikov,'86]

CFTs are QFTs invariant under angle-preserving transformations of spacetime

Virasoro algebra

In 2D a CFT is invariant under the Virasoro algebra:

$$[\boldsymbol{L}_{n},\boldsymbol{L}_{m}] = (n-m)\boldsymbol{L}_{n+m} + \frac{c}{12}n\left(n^{2}-1\right)\delta_{n+m,0}, \quad [\overline{\boldsymbol{L}}_{n},\overline{\boldsymbol{L}}_{m}] = (n-m)\overline{\boldsymbol{L}}_{n+m} + \frac{c}{12}n\left(n^{2}-1\right)\delta_{n+m,0}, \quad [\boldsymbol{L}_{m},\overline{\boldsymbol{L}}_{m}] = 0$$

States in a representation of the Virasoro algebra (analytic sector) can be written as

$$|\phi; n_1, n_2, ..., n_k\rangle = L_{-n_1}L_{-n_2}...L_{-n_k}|\phi\rangle, \quad n_1 \le n_2 \le ... \le n_k.$$

And the Hilbert space

$$\mathcal{H} = \bigoplus V(\phi) \otimes \overline{V}(\phi)$$

[Beliavin, Polyakov, Zamolodchikov,'84]

Minimal models

Some CTFs have a finite number of modules: these are the minimal models.

Some facts:

- The minimal models are identified by M(p,q) where p and q are co-prime integers.
- Some m.m. are unitary and these are classified as M(p,p+1); the others are non-unitary.

$$\mathscr{H}=igoplus_{\phi}V(\phi)\otimes \overline{V}(\phi) \ \Delta_{r,s}=rac{(pr-qs)^2-(p-q)^2}{4pq} \ c=1-rac{(p-q)^2}{2}$$

[Beliavin, Polyakov, Zamolodchikov,'84; Cardy; Friedan, Qiu, Shenker,'85]

Unitary minimal models and Ginzburg-Landau

$$M(p,p+1)$$

$$\mathcal{L}_{G.L.} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi + a_1 \varphi + a_2 \varphi^2 + \dots + g_{2p-4} \varphi^{2p-4} + \varphi^{2p-2}$$

$$a_1 = a_2 = \dots = a_{2p-4} = 0$$

Strategy sketch:

 Use the OPEs to relate normal ordered powers of the most relevant field with the other primaries:

$$\varphi \times \varphi = \mathcal{Y} + \widetilde{[\psi]} + [\sigma] + \dots \Rightarrow \psi \sim : \varphi^2 :$$

• Iterate the process until:

$$L_{-1}\overline{L}_{-1}\varphi \sim : \varphi^{2p-3} : \Rightarrow \partial \overline{\partial}\varphi \sim : \varphi^{2p-3} :$$

EoM of a Ginzburg-Landau

The Plan

- Review of main results in 2D CFTs
- Review of the Ising case (but using our tools)
- Some results on the Tricritical Ising
- Conjetures on non-Hermitian multicritical points

Ising and Y.L. edge singularity

The field theoretical approach

We need a thermal deformation combined with an imaginary magnetic $Y_{\text{Yang-Lee fixed point}}$ deformation of the minimal model M(3,4) (Ising).

$$\mathcal{L}_{Y.L.} = \psi \overline{\partial} \psi + \overline{\psi} \partial \overline{\psi} + \underline{im} \overline{\psi} \psi + \underline{ih} \sigma$$

$$M(3,4)$$

Thermal deformation (Imaginary) magnetic deformation

Ising and Y.L. edge singularity Comments on PT symmetry

The PT symmetry depends on two conditions:

i)
$$[H, PT] = 0$$
, ii) $PT|\psi\rangle = e^{i\varphi}|\psi\rangle$ $(H|\psi\rangle = E_{\psi}|\psi\rangle)$.

- Non PT-symmetric phase: If i) and ii) do not holds the energy spectrum is complex
- PT-symmetric phase: If i) and ii) hold the energy spectrum is real
- Spontaneously broken PT phase: If i) holds but ii) does not hold the energies appear either as real values or in complex conjugate pairs

Ising and Y.L. edge singularity

Comments on PT symmetry

$$\mathcal{L}_{Y.L.} = \psi \overline{\partial} \psi + \overline{\psi} \partial \overline{\psi} + i m \overline{\psi} \psi + i h \sigma$$

In our case the Lagrangian is PT invariant, indeed the PT transformations are

$$x \to -x$$
, $i \to -i$, $\psi \to i\psi$, $\overline{\psi} \to i\overline{\psi}$, $\sigma \to -\sigma$.

So i) holds, but we don't know, a priori, if we are in the PT-symmetric phase or in the spontaneously broken symmetric phase.

The Yang-Lee fixed point is believed to be the critical point that separates a PT-symmetric regime from a spontaneously broken PT regime.

Ising and Y.L. edge singularity ceff-theorem

The usual c-theorem can be extended for non-unitary models with the following differences:

[Castro-Alvaredo, Doyon, Ravanini,'17]

- We have to be in the unbroken PT-phase (real spectrum);
- The c-function interpolates between <u>effective</u> central charges;

$$c_{eff} = c - 24\Delta_{min}$$

In our case this theorem provides a bound on the effective central charge:

$$c_{eff}^{ir} < c_{eff}^{uv} = \frac{1}{2}$$

The only possibility is M(2,5)

Ising and Y.L. edge singularity

The Fisher's and Cardy's arguments (revisited)

Fisher proved that the Ginzburg Landau of the infrared theory is

$$\mathcal{L}_{Y.L.} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi + i(h - h_0) \varphi + i \gamma \varphi^3 .$$
 [Fisher,'78

- Starting from the Fisher's result, Cardy proved that the CFT that controls the Yang-Lee edge singularity is the minimal model M(2,5). Indeed this is the only CFT (minimal model) that satisfy the following conditions:
- There is only one relevant field ϕ ;
- The three point function $\langle \phi(x_1)\phi(x_2)\phi(x_3)\rangle$ is nonzero. [Cardy,'85]

Truncated conformal space approach (TCSA)

A numerical approach

Step 1: Compute the (finite volume) Hamiltonian in the conformal basis

$$\boldsymbol{H} = \boldsymbol{H}_{CFT} + \boldsymbol{V} = \frac{2\pi}{R} \left(\boldsymbol{L}_0 + \overline{\boldsymbol{L}}_0 - \frac{c}{12} \right) + \lambda \int \phi \, d^2 z =$$

$$= \frac{2\pi}{R} \begin{pmatrix} \star & 0 & 0 & \dots & \dots \\ 0 & \star & 0 & \dots & \dots \\ 0 & 0 & \star & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{pmatrix} + R^{1-2\Delta} \begin{pmatrix} \star & \star & \star & \star & \dots & \dots \\ \star & \star & \star & \star & \dots & \dots \\ \star & \star & \star & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{pmatrix}.$$

A numerical approach

Step 2: Evaluate the Hamiltonian of the theory truncated at a certain energy scale;

This is equivalent to truncate the Hilbert space:

$$L_0 | \phi; n_1, ..., n_k \rangle = \Delta_{\phi} + n_1 + ... + n_k$$

Step 3: Diagonalize the resulting (finite) matrix to find the non-perturbative energy spectrum.

The non-perturbative spectrum at finite volume

For $R \ll \xi$ UV theory \longrightarrow $E_n \simeq \frac{2\pi}{R} \left(2\Delta^{uv} + 2N^{uv} - \frac{c^{uv}}{12} \right)$

For
$$R \gg \xi$$

IR theory

$$2\pi \left(2\pi ir + 2\pi ir\right)$$

$$E_n \simeq \frac{\epsilon_0}{\xi^2} R + \sum_i M_i \qquad E_n \simeq FR + \frac{2\pi}{R} \left(2\Delta^{ir} + 2N^{ir} - \frac{c^{ir}}{12} \right)$$

Massive RG flows: does it work?

Example: Magnetic deformation of M(3,4) (Ising).

From the integrable bootstrap program:

	Analytic	Numerical	TCSA
m_1	1	1	1.00222
m_2	$2\cos(\pi/5)$	1.6180	1.62724
m_3	$2\cos(\pi/30)$	1.9890	1.98353
m_4	$4\cos(\pi/5)\cos(7\pi/30)$	2.4029	2.38096
m_5	$4\cos(\pi/5)\cos(2\pi/15)$	2.9563	2.93015
m_6	$4\cos(\pi/5)\cos(\pi/30)$	3.2183	3.18481
m_7	$4\cos^2(\pi/5)\cos(7\pi/30)$	3.8911	3.90557
m_8	$4\cos^2(\pi/5)\cos(2\pi/15)$	4.7834	4.76382

[Zamolodchikov,'89]

Massless RG flows

At finite volume it is impossible to reach exactly the critical point, so

- Localize the critical point is (the mass of the lightest particle is zero) in R-space;
- The position depends on the coupling constants: change the coupling constants to push the critical point at "infinite" volume;
- Choose a "physical window" in the R-space in which the spectrum approach the CFT spectrum (without really reach the CFT).

$$E_i - E_0 \simeq \frac{4\pi}{R} \left(\Delta^{ir} - \Delta^{ir}_{min} + n^{ir} \right) = \frac{4\pi}{R} C_i$$

$$E_i - E_0 \simeq \frac{4\pi}{R} \left(\Delta^{ir} - \Delta^{ir}_{min} + n^{ir} \right) = \frac{4\pi}{R} C_i$$

Yang-Lee edge singularity: phenomenology

Before the critical point

"After" the critical point

TCSA results

Yang-Lee edge singularity: CFT

The prediction from the minimal model M(2,5)

$$C_1^{M(2,5)} = \frac{R}{4\pi} \left(E_1 - E_0 \right) \sim \Delta_1 - \Delta_{\varphi} + n = 0 + \frac{1}{5} + 0 = 0.2$$

An aside: Xu and Zamolodchikov proposed an effective field theory approach to the Yang-Lee edge singularity such as

$$\mathcal{A}_{\text{eff}} = \mathcal{A}_{\text{YLCFT}} + \lambda \int \phi(x) d^2x + \frac{\alpha}{\pi^2} \int T\bar{T}(x) d^2x + \frac{\beta}{2\pi} \int \Xi(x) d^2x,$$

$$\Xi(x) = \left(L_{-4} - \frac{625}{624} L_{-1}^4\right) \left(\bar{L}_{-4} - \frac{625}{624} \bar{L}_{-1}^4\right) \phi(x).$$

[Xu,Zamolodchikov,'21]

The Plan

- Review of main results in 2D CFTs
- Review of the Ising case (but using our tools)
- Some results on the Tricritical Ising
- Conjetures on non-Hermitian multicritical points

The field theoretical approach

We need all the scaling region with an imaginary sub-magnetic and magnetic deformations of the minimal model M(4,5) (tricritical Ising).

The considerations on PT-symmetry are the same we saw in the Ising case.

Observe: the physical magnetic field is a combination of the magnetic field and the submagnetic field.

The Fisher's argument (revisited)

• The Fisher argument, adapted in our case gives:

$$\mathcal{L}_{Y.L.} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi + i(h - h_0) \varphi + i \gamma \varphi^5.$$

 This is not correct because the Fisher argument works when the couplings are independent, but in our case the couplings are not independent. A counting of expected relevant fields in the infrared theories gives 2.

Energies

TCSA Results: the non-Hermitian tricritical point

TCSA Results: a non-hermitian tricritical point

The Plan

- Review of main results in 2D CFTs
- Review of the Ising case (but using our tools)
- Some results on the Tricritical Ising
- Conjetures on non-Hermitian multicritical points

Non-Hermitian multicritical points

A conjecture

The natural generalization is that the non-Hermitian multicritical points are controlled by M(2,2n+3), n=1,2,...

Indeed:

- The number of expected relevant fields coincides;
- The ceff-theorem bound is satisfied;
- It is very hard to test the conjectures with TCSA;

Non-Hermitian multicritical points

A conjecture and new RG flows

Assuming the conjecture is true we expect new RG flows:

$$M(2,q) + i\lambda\phi_{n,m} \rightarrow M(2,q-2)$$

This flows are integrable and we can check if the infrared theory is M(2,q-2) by using the (massless) thermodynamic Bethe ansaz and TCSA.

[AM, Takàcs, Lencsès, Mussardo; in preparation]

THANK YOU for your ATTENTION!

The minimal model M(2,5)

Some proprieties

- It is a non-unitary minimal model;
- It contains only two primary fields: the identity and a field of weights (-1/5,-1/5) which is also the only relevant field in the theory;
- The only relevant OPE is

$$\phi(x)\phi(x') = |x - x'|^{4/5}(1 + \text{descendants}) + c_{\phi\phi}^{\phi}|x - x'|^{2/5}(\phi(x) + \text{descendants}),$$

$$c_{\phi\phi}^{\phi} = i \left(\frac{\Gamma(1/5)}{\Gamma(4/5)}\right)^{3/2} \left(\frac{\Gamma(2/5)}{\Gamma(3/5)}\right)^{1/2}$$

$$c_{\phi\phi}^{\phi} = i \left(\frac{\Gamma(1/5)}{\Gamma(4/5)} \right)^{3/2} \left(\frac{\Gamma(2/5)}{\Gamma(3/5)} \right)^{1/2} . \qquad \mathcal{L}_{Y.L.} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi + i(h - h_0) \varphi + i \gamma \varphi^3 .$$

Integrability

Existence of an infinite tower of conserved charges

$$\mathbf{Q}_s \ket{\theta^a} = q_s^a e^{s\theta^a} \ket{\theta^a}$$

The rapidity

$$p_0 + p_1 = me^{\theta}$$
, $p_0 - p_1 = me^{-\theta}$

$$\mathbf{Q}_{s} |\theta_{1}^{a_{1}}, \dots, \theta_{n}^{a_{n}}\rangle = \left(q_{s}^{a_{1}} e^{s\theta_{1}^{a_{1}}} + \dots + q_{s}^{a_{n}} e^{s\theta_{1}^{a_{n}}}\right) |\theta_{1}^{a_{1}}, \dots, \theta_{n}^{a_{n}}\rangle$$

A fundamental propriety: the Yang-Baxter

The integrable bootstrap program

Every pole of the S-matrix corresponds to a new particle

We can add particles in the theory (i.e. poles in the S-matrix) until the bootstrap equations are totally consistent

The bootstrap equation visualized:

[Zamolodchikov, Mussardo]

A look into the experiments

Magnetic deformation of Ising

 E_8 Spectra of Quasi-one-dimensional Antiferromagnet Ba $\mathbf{Co}_2\mathbf{V}_2\mathbf{O}_8$ under Transverse Field

Haiyuan Zou,^{1,*} Yi Cui,^{2,*} Xiao Wang,^{1,*} Z. Zhang,¹ J. Yang,¹ G. Xu,³ A. Okutani,⁴ M. Hagiwara,⁴ M. Matsuda,⁵ G. Wang,⁶ Giuseppe Mussardo,⁷ K. Hódsági,⁸ M. Kormos,⁹ Zhangzhen He,¹⁰ S. Kimura,¹¹ Rong Yu,² Weiqiang Yu,^{2,†} Jie Ma,^{12,‡} and Jianda Wu^{1,13,§}

A look into the experiments

The Yang-Lee zeros

Ising

coupled with an external spin S

$$H = -J\sum_{\langle i,j\rangle} \sigma_i \sigma_j + H\sum_i \sigma_i \qquad -$$

The Spin S can fluctuate

$$|\psi(0)\rangle = \frac{|+\rangle + |-\rangle}{\sqrt{2}} \otimes |E\rangle$$

$$\langle \psi(t) | S_x | \psi(t) \rangle = \prod_n \frac{\left(e^{-2\beta h + 4i\lambda t} - z_n\right)}{e^{-2\beta t} - z_n}$$

YANG-LEE ZEROS

A look into the experiments The Yang-Lee zeros

Experimental Observation of Lee-Yang Zeros

Xinhua Peng,^{1,*} Hui Zhou,¹ Bo-Bo Wei,² Jiangyu Cui,¹ Jiangfeng Du,^{1,†} and Ren-Bao Liu^{2,‡}

¹Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics,
and Synergetic Innovation Center of Quantum Information & Quantum Physics,
University of Science and Technology of China, Hefei 230026, China

²Department of Physics, Centre for Quantum Coherence, and Institute of Theoretical Physics,
The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
(Received 11 September 2014; published 5 January 2015)

YANG-LEE ZEROS

