PARISI-SOURLAS SUPERSYMMETRY
iIn RFIM and branched polymers

Apratim Kaviraj
DESY

Based on
1912.01617 , 2009.10087, 2112.06942, 2203.12629 w/ S. Rychkov & E. Trevisani



Invitation

[1912.01617] AK, Rychkov, Trevisani, JHEP
[2009.10087] AK, Rychkov, Trevisani, JHEP
[2112.06942] AK, Rychkov, Trevisani , PRL
[2203.12629] AK, Trevisani , JHEP

A class of disordered (impure) QFTs near criticality has a mysterious hidden supersymmetry (Parisi-Sourlas

SUSY).

The SUSY results in the phenomenon of “dimensional reduction” of the disordered CFT (Parisi-Sourlas

conjecture).

Some findings from experiments/numerics in this model have not been explained till date.

Main results:

e Systematic set-up of RG flow, understanding of the SUSY and its emergence

 Mechanism of how SUSY “breaks” and consistent explanation of all experimental/numerical findings.
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RG flow and critical points

Conformal Field Theories (CFTs) are scale invariant theories, important in most aspects of theoretical
physics (String Theory, AdS/CFT, Statistical Physics, etc).

CFTs describe critical behavior of systems, which is independent of microscopic details.
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Conformal Field Theories (CFTs) are scale invariant theories, important in most aspects of theoretical
physics (String Theory, AdS/CFT, Statistical Physics, etc).

CFTs describe critical behavior of systems, which is independent of microscopic details.
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RG flow of Ising model is often described by a scalar quantum field theory ( Z¢*= Zising)

S[¢] = /ddx[(c’?gb)Q +m2¢? + A¢4] A=\,
UV CFT il

Beta function 8y = —eX + \ =

“Tune” m=0



Pure vs impure CFTs

At large correlation lengths (near critical point) the effect of

Impurities become prominent.

Quenched disorder: When impurities are frozen - not in

thermal equilibrium with system.
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Random field models
Definition: ~ S|h] = /ddx [(3@2 + V(p) + h(a:)gb(a:)}

Impurity distribution: _ _i d,.12
(Gaussian) P(h) = exp [ 2H dh }

H = strength of disorder.



Random field models

Definition: ~ S|h] = /ddm [(3@2 + V(p) + h(a:)gb(a:)}

Impurity distribution: _ _i d,.12
(Gaussian) P(h) = exp [ 2H dh }

H = strength of disorder.

Disorder averaging (quenched)

(P(z1)d(w2)P(23) -~ -) :/Dh(l’) (@(x1)o(x2) -+ )n Plh(x)]
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Random field models

Definition: S[h] — /ddm [(8¢)2 +

Mostly studied:

V(9) + h(z)o(x)

Random field Ising Model (RFIM)

Random field ¢ Model

l Lattice model

——  Branched polymers




Random field models
Definition: ~ S|h] = /ddaj [(@qb)Q + V(g) + h(a:)gb(a:)}

Disorder-averaged correlators have a new critical point !

What CFT describes
the critical point of random field models?



Parisi-Sourlas conjecture

[Parisi, Sourlas, 1979]

1. Parisi-Sourlas SUSY: The fixed point of a random field
theory is described by a supersymmetric CFT.

2. Dimensional reduction: Observables in the SUSY CFT
are same as a (d-2)-dimensional CFT.




Parisi-Sourlas conjecture

RG flow to a fixed point OSP(d+1,1]2)
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OSP(d+1,1|2) superconformal symmetry
(explicit form later)

SUSY correlators dimensionally reduce to a local CFT4.2 .



Parisi-Sourlas conjecture

RG flow to a fixed point OSP(d+1,1]2)

SUSY

Random field

OSP(d+1,1|2) superconformal symmetry
(explicit form later)

SUSY correlators dimensionally reduce to a local CFT4.2 .

Superconformal blocks = (d-2) conformal blocks
susy,(d) N\ ~(d=2) _

Gay (2,2) =Gr 7 (2, 2)

Susy stress tensor => conserved (d-2) stress tensor

[1912.01617] AK, Rychkov, Trevisani



It does not always work !



Numerical check of dimensional reduction (Monte Carlo)
[Fytas, Martin-Mayor, Parisi, Picco, Sourlas 2013-2019]
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Numerical check of dimensional reduction (Monte Carlo)
[Fytas, Martin-Mayor, Parisi, Picco, Sourlas 2013-2019]

Lattice model
(Pure CFT)
d-2 dimension

Lattice model
(Disordered CFT)

] ] Dimensional reduction
d dimension

6d free theory 4d free theory J
V() = Ao 5d RFIM 3d Ising v 4
4d RFIM 2d Ising X

How does the Parisi-Sourlas

6d Branched polymer 4d Lee-Yang J
V((b) =9 ¢3 5d Branched polymer 3d Lee-Yang J
4d Branched polymer 2d Lee-Yang J
3d Branched polymer 1d Lee-Yang J

conjecture work/fail?
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Main question: how does SUSY emerge in the RG flow?

To answer: We need a well-defined QFT

We are interested in disorder-averaged correlation functions

<gb(az1)gb(x2) v > come from 10g Z(h)

. 4t —1
log Z(h) = lim

n—0 n

Enter the Replica Method



Replica Method

This action at 7—()

is a QFT that describes random field models



Replica action in Cardy variables
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Replica action in Cardy variables

1

D (06:)" + H(Y_ 00)* + (6} + Ad)

b1 =+ %} bi = o — g +xi [i=2,--,n] (Gives good scaling operators) [Cardy, 1985]
> 1¢ 2 2 X; 3 2.2
= 0pdw — Hw* + 5 Z(@X@-) + m*(pw + 7) + A4 w + 6¢“x7)
1=2

+ O(n) + irrelevant

X 30 1,1 (fermions)

L> OSp supersymmetric theory
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Emergence of SUSY

Random field Good QFT For scaling Replica
< (Cardy
operators variables)
A
|
|
|
|
: RG flow
|
* SUSY-breaking

relevant operators ?

Dimensional reduction

— .

Ssusy = 0pOw — Hw? + 090y + A(4p°w + 12p%9))



A paradox!!

uv
Replica theory

Permutation symmetry

of 71 replicas No Sy symmetry

( Sn symmetry )

But RG should preserve all symmetries !!



uv
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Cardy

Resolution

Cardy variables

Obscures S, symmetry
to get scaling operators.

1
4g0?’w + 6g02xg +
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Resolution

uv
Replica theory

Cardy variables

Obscures S, symmetry
to get scaling operators.

Cardy
OSn singlet == Op + Opl + (’)F2 + e

same RG correction (anomalous dimension)
but different overall scaling
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RG evolution of leader and followers
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RG evolution of leader and followers

Leader
Or,

OFl \k
Followers

Or,

oV — IR A1

The leaders may flow to (an emergent) SUSY CFT
....or may not!!

We classified and computed anomalous dimensions of
low lying leaders in perturbation theory

[2009.10087] AK, Rychkov, Trevisani
[2112.06942] AK, Rychkov, Trevisani



Findings

Numerical findings of SUSY
or dimensional reduction

For V(¢) = A¢* we found SUSY breaking leader
operators become relevantin d < d. € [4.2,4.5]

(unstable fixed point)

=3

=8

For V(¢) = g¢° we found no SUSY breaking leader

operators becoming relevant.

=6

NSISNSSNSN (X XSIS

[2009.10087] AK, Rychkov, Trevisani =3
[2112.06942] AK, Rychkov, Trevisani

[2203.12629] AK, Trevisani

(JHEP, PRL)
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Future directions

Tuning to an unstable SUSY fixed point in d=4 RFIM

(confirmation of our scenario).

Conformal bootstrapping the RFIM (Difficulty: taking limits)

Unexplored features of logarithmic CFTs. Th k
Understanding the implications SUSY and dimensional reduction. anks



