Hexagonalization of Wilson Loops

History, Challenges and Perspectives

Davide Lai (joint work w/ Till Bargheer)

DESY Theory Workshop 2022
Hamburg, 29.09.2022
DFG
Deutsche
Forschungsgemeinschaft

$\mathcal{N}=4 \mathbf{S Y M}$

Just a fast introduction to $\mathcal{N}=4$ SYM:

$$
\begin{equation*}
" \mathcal{N}=4 \mathrm{SYM} \equiv(\overbrace{\mathfrak{g} \equiv \mathfrak{s u}(N)}^{\text {Lie algebra }}, \overbrace{A, \phi, \lambda, \psi}^{\text {fields }}, \overbrace{g_{\mathrm{YM}}, \tau_{\mathrm{YM}}}^{\text {parameters }}, \overbrace{\mathscr{L}_{\mathcal{N}=4}}^{\text {Lagrangian Mink }{ }_{4} \text { 4-form }}) \tag{1}
\end{equation*}
$$

$>\mathfrak{s u}(N)$ gauge theory with matter
$>\mathfrak{p s u}(2,2 \mid 4)$ invariant
> superconformal at the quantum level [Sohnius and West, 1981] [Seiberg, 1988]
Solve the theory? $\left(\left\{\mathscr{G}^{M}(x)\right\}\right)$

$\mathcal{N}=4 \mathbf{S Y M}$

Just a fast introduction to $\mathcal{N}=4$ SYM:

$$
\begin{equation*}
" \mathcal{N}=4 \mathrm{SYM} \equiv(\overbrace{\mathfrak{g} \equiv \mathfrak{s u}(N)}^{\text {Lie algebra }}, \overbrace{A, \phi, \lambda, \psi}^{\text {fields }}, \overbrace{g_{\mathrm{YM}}, \tau_{\mathrm{YM}}}^{\text {parameters }}, \overbrace{\mathscr{L}_{\mathcal{N}=4}}^{\text {Lagrangian Mink }{ }_{4} \text { 4-form }}) \tag{1}
\end{equation*}
$$

$>\mathfrak{s u}(N)$ gauge theory with matter
$>\mathfrak{p s u}(2,2 \mid 4)$ invariant
> superconformal at the quantum level [Sohnius and West, 1981] [Seiberg, 1988]
Solve the theory? $\left(\left\{\mathscr{G}^{M}(x)\right\}\right)$

$\mathcal{N}=4$ SYM Dynamics

$>$ Use the conformal algebra $\mathfrak{s o}(2,4)$ to constrain the correlation functions

$$
\begin{equation*}
\left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(y)\right\rangle \propto d_{x y}^{-2 \Delta_{i}}, \quad\left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(y) \mathcal{O}_{k}(z)\right\rangle \propto \frac{\mathrm{C}_{i j k}}{d_{x y}^{\Delta_{i}+\Delta_{j}-\Delta_{k}} d_{y z}^{\Delta_{j}+\Delta_{k}-\Delta_{i}} d_{z x}^{\Delta_{k}+\Delta_{i}-\Delta_{j}}} \tag{2}
\end{equation*}
$$

Data of the theory

$$
\begin{equation*}
" \mathcal{N}=4 \text { SYM" }=\left\{\Delta_{i}, \mathrm{C}_{i j k}\right\} \tag{3}
\end{equation*}
$$

where $\mathcal{D} \bullet \mathcal{O}_{i}=\Delta_{i} \mathcal{O}_{i}$

$\mathcal{N}=4$ SYM Dynamics

> Consider the planar limit ['t Hooft, 1974]

Definition

Let $\mathcal{N}=4$ SYM be the theory defined above. We call planar limit of the theory the following:

$$
\begin{align*}
N & \rightarrow \infty, g_{\mathrm{YM}} \rightarrow 0 \tag{4}\\
\lambda & \equiv g_{\mathrm{YM}}^{2} N \text { finite }
\end{align*}
$$

$\mathcal{N}=4$ SYM Dynamics

> Consider the planar limit ['t Hooft, 1974]

Definition

Let $\mathcal{N}=4$ SYM be the theory defined above. We call planar limit of the theory the following:

$$
\begin{gather*}
N \rightarrow \infty, g_{\mathrm{YM}} \rightarrow 0 \tag{4}\\
\lambda \equiv g_{\mathrm{YM}}^{2} N \text { finite } \\
\mathscr{G}^{M}(x) \equiv \sum_{m} \frac{1}{N^{m}} \mathscr{G}_{m}(\lambda) \equiv \text { "genus } m \text { " diagrams }
\end{gather*}
$$

$\mathcal{N}=4$ SYM Dynamics

We focus on $m=0$ (strictly "planar") [Beisert et al., 2010]

Integrable 2PFs

For Δ_{i} we have nice news [Beisert, 2005]:
$\langle Z Z W Z W Z Z W Z Z W\rangle \Rightarrow$

$$
W=\text { "magnon" }
$$

$$
\text { 2-particle } S \text {-matrix, } \mathcal{S}_{\text {Beisert }}
$$

Integrable 3PFs

What about $\mathrm{C}_{i j k}$?

Thanks to the AdS/CFT correspondence [Maldacena, 1997], [Gubser, Klebanov, Polyakov, 1998], [Witten, 1998] we have naturally a string dual to three-point functions:

Figure: Classical "pair of pants"

Integrable 3PFs

In our setting (AdS/CFT/Spin chains) we can see the 3PF as the observable describing the scattering of three spin chains, each with its own excitations ("magnons") that can propagate.

Figure: We attach a spin chain on every operator

Integrable 3PFs

In our setting (AdS/CFT/Spin chains) we can see the 3PF as the observable describing the scattering of three spin chains, each with its own excitations ("magnons") that can propagate.

The so-called BKV prescription [Basso, Komatsu, Vieira, 2015] consists in the cutting of the worldsheet in two hexagonal patches

Figure: BKV cutting of the worldsheet

Integrable 3PFs

In our setting (AdS/CFT/Spin chains) we can see the 3PF as the observable describing the scattering of three spin chains, each with its own excitations ("magnons") that can propagate.

The so-called BKV prescription [Basso, Komatsu, Vieira, 2015] consists in the cutting of the worldsheet in two hexagonal patches

$$
\begin{equation*}
\mathfrak{p s u}(2,2)^{2} \rightarrow \mathfrak{p s u}(2,2)_{\text {diag }} \simeq \mathfrak{p s u}(2,2) \tag{5}
\end{equation*}
$$

Figure: BKV cutting of the worldsheet

Integrable 3PFs

How can we reconstruct the structure constant?
> We have a "real", physical set of excitations of the a single spin chain, that we can group as a bi-partition $(\alpha, \bar{\alpha})$

BKV Conjecture

$$
\begin{equation*}
\mathrm{C}_{i j k} \equiv \sum_{\beta} \sum_{\{\alpha\},\{\bar{\alpha}\} \text { partitions }} w(\alpha, \bar{\alpha}) \mathcal{H}^{\{\alpha, \beta\}} \mathcal{H}^{\{\bar{\alpha}, \beta\}} \tag{6}
\end{equation*}
$$

Integrable 3PFs

How can we reconstruct the structure constant?
$>$ We have a set β of "mirror", virtual excitations arising from the cutting/gluing procedure

BKV Conjecture

$$
\begin{equation*}
c_{i j k} \equiv \sum_{\beta} \sum_{\{\alpha \alpha\}\{\bar{\alpha}) \text { partions }} w(\alpha, \bar{\alpha}) \mathcal{H}^{\{\alpha, \beta\}} \mathcal{H}^{\{\bar{\alpha}, \beta\}} \tag{7}
\end{equation*}
$$

Integrable 3PFs

A new conjecture

The central takehome message here is that:

$$
\begin{gathered}
\mathrm{C}_{i j k} \Leftrightarrow \text { "tesselation" } \\
\text { of a Riemann surface }= \\
\text { product of "bootstrapable" } \\
\text { hexagonal form factors }
\end{gathered}
$$

Definition

Let $\mathfrak{h}^{\mathrm{A}_{1} \dot{A}_{1} \ldots \hat{A}_{N} \dot{\mathrm{~A}}_{N}}$ be the creation amplitude for N magnons on a single hexagon edge.
We have:
$\mathfrak{h}^{\mathbf{A}_{1} \ldots \mathrm{~A}_{N}}=c_{\text {fermion }} c_{\text {dynamic }}\left\langle\dot{\mathbf{A}}_{N} \ldots \dot{\mathbf{A}}_{1}\right| \mathcal{S}_{\text {Beisert }}\left|\mathrm{A}_{1} \ldots \mathrm{~A}_{N}\right\rangle$

Wilson Loops

Question [Kim, Kiryu, 2018]: can we extend the hexagon procedure to an open string setting?

Wilson Loops

Question [Kim, Kiryu, 2018]: can we extend the hexagon procedure to an open string setting?

We can consider an open string worldsheet ending on ∂ AdS $_{5} \simeq$ Mink $_{4}$ describing a loop \mathcal{C} (dual to a Wilson loop, [Maldacena, 1998])

Wilson Loops

Question [Kim, Kiryu, 2018]: can we extend the hexagon procedure to an open string setting?

We can consider an open string worldsheet ending on ∂ AdS $_{5} \simeq$ Mink $_{4}$ describing a loop \mathcal{C} (dual to a Wilson loop, [Maldacena, 1998])

Definition

Let $\mathcal{C} \subset$ Mink $_{4}$ a closed path. Considering the space of fields of $\mathcal{N}=4 \mathrm{SYM}$, we define as 1/2-BPS Wilson loop the following quantity:

$$
\begin{gather*}
W[\mathcal{C}] \equiv \mathrm{P} \exp \left(\oint_{\mathcal{C}} \imath A \cdot \mathrm{~d} s+\vec{\phi} \cdot \overrightarrow{\mathbf{n}}|\mathrm{d} s|\right), \tag{8}\\
\vec{\phi} \cdot \overrightarrow{\mathbf{n}}=\phi^{j} \delta_{j}{ }^{6}=\phi^{6}
\end{gather*}
$$

Wilson Loops

We know [Okamura, Takayama, Yoshida, 2005], [Drukker, Kawamoto, 2006] that Wilson loop's correlators admit an open spin chain representation!

Wilson Loops

What is the translation of BKV cutting in the open string setting?

We have three edges that are physical (end of the OS) and three edges that are associated to the propagation of the OS.

Wilson Loops

(open) cutting $=|\mathcal{B}\rangle$-contraction

Wilson Loops

BKV Conjecture revisited [Kim, Kiryu, 2017], [Kiryu,
Komatsu, 2018]

$$
\begin{aligned}
|\mathcal{B}\rangle \equiv \sum_{k} b_{k}\left|\psi_{k}\right\rangle & \equiv \exp \left(\frac{1}{2} \int \mathbf{K}(q) a_{q}^{\dagger} a_{-q}^{\dagger}\right)|0\rangle \\
\mathrm{C}_{i j k}^{(\mathrm{BPS})} & \equiv \sum_{\beta} b_{\beta_{1}} b_{\beta_{2}} b_{\beta_{3}} \mathcal{H}^{\{\beta\}}
\end{aligned}
$$

where q is the mirror momentum and $\mathbf{K}(q)$ is the analitically continued reflection matrix (R)

Wilson Loops

BKV Conjecture revisited [Kim, Kiryu, 2017], [Kiryu,
Komatsu, 2018]

Wilson Loops

> [Cavaglià, Gromov, Levkovich-Maslyuk, 2018] analysed a three-cusped Wilson loop in the Q-functions framework (see [Gromov, Kazakov, Leurent, Volin, 2013]), encountering massive simplifications

Let $\left\{\theta_{i} ; \phi_{i}\right\}$ be the internal and physical angles defining the cusp and $g \equiv \frac{\sqrt{\lambda}}{4 \pi}$ the 't Hooft coupling. We define as ladder limit the following:

Wilson Loops

> [Cavaglià, Gromov, Levkovich-Maslyuk, 2018] analysed a three-cusped Wilson loop in the Q-functions framework (see [Gromov, Kazakov, Leurent, Volin, 2013]), encountering massive simplifications

Definition

Let $\left\{\theta_{i} ; \phi_{i}\right\}$ be the internal and physical angles defining the cusp and $g \equiv \frac{\sqrt{\lambda}}{4 \pi}$ the 't Hooft coupling. We define as ladder limit the following:

$$
\begin{gathered}
\theta_{i} \rightarrow \imath \infty, g \rightarrow 0 \\
\hat{g}_{i} \equiv \frac{g}{2} e^{-\imath \theta_{i} / 2} \text { finite }
\end{gathered}
$$

Wilson Loops

Learn from [Correa, Maldacena, Sever, 2012], [Drukker, 2012]
> Consider a Wilson loop with one insertion $W\left[\operatorname{Tr}\left(Z^{L}\right)(0)\right]$, in the large L limit: this form an open spin chain vacuum
$>$ Fix the \mathbf{R} matrix
> "Open-closed string duality" (space-time flip to the mirror theory):
boundary condition $\rightarrow|\mathcal{B}\rangle$

Wilson Loops

Learn from [Correa, Maldacena, Sever,

$$
\mathbf{R}=R_{0}(p) \hat{\mathcal{S}}_{\text {Beisert }}
$$

2012], [Drukker, 2012]
> Consider a Wilson loop with one insertion $W\left[\operatorname{Tr}\left(Z^{L}\right)(0)\right]$, in the large L limit: this form an open spin chain vacuum
$>$ Fix the \mathbf{R} matrix
> "Open-closed string duality" (space-time flip to the mirror theory):
boundary condition $\rightarrow|\mathcal{B}\rangle$

Wilson Loops

Learn from [Correa, Maldacena, Sever, 2012], [Drukker, 2012]
> Consider a Wilson loop with one insertion $W\left[\operatorname{Tr}\left(Z^{L}\right)(0)\right]$, in the large L limit: this form an open spin chain vacuum
$>$ Fix the \mathbf{R} matrix
$>$ "Open-closed string duality" (space-time flip to the mirror theory):

$$
\mathbf{R}=\frac{1}{\sigma_{B}(p) \sigma(p,-p)} \frac{1+\left(x^{-}\right)^{2}}{1+\left(x^{+}\right)^{2}} \hat{\mathcal{S}}_{\text {Beisert }}
$$

$$
\sigma_{B}(p)=e^{\imath \chi\left(x^{+}\right)-\imath \chi\left(x^{-}\right)}
$$

boundary condition $\rightarrow|\mathcal{B}\rangle$

$$
\chi(x)=\oint \frac{\mathrm{d} z}{2 \pi \imath} \frac{1}{x-z} \log \left(\frac{\sinh \left(2 \pi g\left(z+\frac{1}{z}\right)\right)}{2 \pi g\left(z+\frac{1}{z}\right)}\right)
$$

Wilson Loops

Learn from [Correa, Maldacena, Sever, 2012], [Drukker, 2012]
> Consider a Wilson loop with one insertion $W\left[\operatorname{Tr}\left(Z^{L}\right)(0)\right]$, in the large L limit: this form an open spin

$$
\mathbf{R}=\frac{1}{\sigma_{B}(p) \sigma(p,-p)} \frac{1+\left(x^{-}\right)^{2}}{1+\left(x^{+}\right)^{2}} \hat{\mathcal{S}}_{\text {Beisert }}
$$ chain vacuum

$>$ Fix the \mathbf{R} matrix
$>$ "Open-closed string duality" (space-time flip to the mirror theory):

$$
\text { boundary condition } \rightarrow|\mathcal{B}\rangle
$$

$$
\mathbf{K}^{A \dot{B} C \dot{D}}(q)=\left(\mathbf{R}^{-1}\left(z^{ \pm}\right)\right)_{\mathrm{E} \dot{\mathrm{~F}}}^{A \dot{B}} \mathcal{C}^{\mathrm{E} \dot{F} C \dot{D}}
$$

Wilson Loops

Learn from [Correa, Maldacena, Sever, 2012], [Drukker, 2012]
> Consider a Wilson loop with one insertion $W\left[\operatorname{Tr}\left(Z^{L}\right)(0)\right]$, in the large L limit: this form an open spin chain vacuum

$>$ Fix the \mathbf{R} matrix
> "Open-closed string duality" (space-time flip to the mirror theory):
boundary condition $\rightarrow|\mathcal{B}\rangle$

Wilson Loops

Learn from [Correa, Maldacena, Sever, 2012], [Drukker, 2012]
$>$ At this point introduce two cusp angles $\{\theta, \phi\}$ that rotate one of the two boundary

$$
\mathbf{m}=\operatorname{Diag}\left(e^{\imath \theta}, e^{-\imath \theta}, e^{\imath \phi}, e^{-\imath \phi}\right)
$$

$$
\mathbf{R}^{A \dot{B}}{ }_{C \dot{D}} \mapsto\left(\mathbf{m}^{-1}\right)^{A} \mathbf{m}^{\mathrm{F}}{ }_{C}(\mathbf{R})^{\mathrm{E} \dot{B}}{ }_{\mathrm{F} \dot{D}}
$$

> Compute the ground state energy trough TBA ansatz ([Yang, Yang, 1969], [Zamolodchikov, 1990], [Dorey, Tateo, 1996], ...)
$>$ Take the $L \rightarrow 0$ limit to get the cusp anomalous dimension

Wilson Loops

In the three-cusped Wilson loop, we have three different boundary states $|\mathcal{B}\rangle_{i} \equiv \mathcal{B}\left(\theta_{i}, \phi_{i}\right)$, each one specified by $\mathbf{K}\left(q, \theta_{i}, \phi_{i}\right)$ of [Correa, Maldacena, Sever, 2012], [Drukker, 2012]

Point of view of [Kim, Kiryu, Komatsu,
Nishimura, 2017]: no local operators, structure
constant of boundary changing operators

Wilson Loops

In the three-cusped Wilson loop, we have three different boundary states $|\mathcal{B}\rangle_{i} \equiv \mathcal{B}\left(\theta_{i}, \phi_{i}\right)$, each one specified by $\mathbf{K}\left(q, \theta_{i}, \phi_{i}\right)$ of [Correa, Maldacena, Sever, 2012], [Drukker, 2012]

Point of view of [Kim, Kiryu, Komatsu, Nishimura, 2017]: no local operators, structure constant of boundary changing operators

Wilson Loops

In the three-cusped Wilson loop, we have three different boundary states $|\mathcal{B}\rangle_{i} \equiv \mathcal{B}\left(\theta_{i}, \phi_{i}\right)$, each one specified by $\mathbf{K}\left(q, \theta_{i}, \phi_{i}\right)$ of [Correa, Maldacena, Sever, 2012], [Drukker, 2012]

Point of view of [Kim, Kiryu, Komatsu, Nishimura, 2017]: no local operators, structure constant of boundary changing operators

PURE MIRROR THEORY!

Perspectives

Some starting point:

> The [Cavaglià, Gromov, Levkovich-Maslyuk, 2018] results are obtained in the ladder limit
$>$ The QSC perspectives underlined a profound difference between $C^{\bullet \bullet \circ}$ (and its generalization $C^{\bullet \bullet \circ}$) and $C^{\bullet \bullet \bullet}$

Perspectives

Some starting point:

> The [Cavaglià, Gromov, Levkovich-Maslyuk, 2018] results are obtained in the ladder limit
> The QSC perspectives underlined a profound difference between $C^{\bullet \circ \circ}$ (and its generalization $C^{\bullet \bullet \circ}$) and $C^{\bullet \bullet 0}$

Some interesting features of the hexagon approach:
\square The hexagon computations does not rely from the beginning on this limit

Perspectives

Some starting point:

> The [Cavaglià, Gromov, Levkovich-Maslyuk, 2018] results are obtained in the ladder limit
> The QSC perspectives underlined a profound difference between $C^{\bullet \circ \circ}$ (and its generalization $C^{\bullet \bullet \circ}$) and $C^{\bullet \bullet}$

Some interesting features of the hexagon approach:
\square The hexagon computations does not rely from the beginning on this limit
\square From the hexagon point of view, turning one, two or three \hat{g}_{i} is not a profound change (some effects have (?) to appear in the resummation)

Thank you!

Contact

Deutsches ElektronenSynchrotron DESY
www.desy.de

Davide Lai © 0000-0002-9294-3908 DESY Theory Group davide.lai@desy.de

SYM (i)

> Gauge theory

- $\quad(\mathfrak{g} \equiv \operatorname{Lie}(G),\langle\cdot, \cdot\rangle), \quad$ "(Gauge) fields" $A \equiv \sigma(\mathcal{P})$, with $\pi_{(A)}: \mathcal{P} \rightarrow \mathcal{M}$
$>$... with some matter
. $X \mid$ Iso $(X)=G$, "Fields" $\phi \equiv \sigma\left(\mathcal{P} \times_{G} X\right)$, with $\pi_{(\phi)}: \mathcal{P} \times_{G} X \rightarrow \mathcal{M}$
. "Potential" $\equiv V: X \rightarrow \mathbb{R}, G$-invariant map

SYM (ii)

... that is also Super!
> We can introduce "dual fields":

- $\operatorname{Dual}(A) \equiv \lambda \equiv \sigma\left(P \times_{G}\left(\mathfrak{g} \otimes \Pi \mathbb{F}^{2 *}\right)\right)$
- $\operatorname{Dual}(\phi) \equiv \sigma\left(\phi^{*}\left(P \times_{G}\left(T X \otimes_{\mathbb{F}} \Pi \mathbb{F}^{2 *}\right)\right)\right)$

SYM (iii)

With these ingredients we can construct a supersymmetric lagrangian:

$$
\begin{gather*}
\mathscr{L}=\left\{-\frac{1}{2}\left|F_{A}\right|^{2}+\left\langle\mathrm{d}_{A} \bar{\phi}, \mathrm{~d}_{A} \phi\right\rangle-\phi^{*}\|\operatorname{grad} W\|^{2}-2 \phi^{*}|\mu|^{2}+\text { fermions }\right\}, \tag{9}\\
V=\|W\|^{2}+2|\mu|^{2}
\end{gather*}
$$

$\mathcal{N}=4 \mathbf{S Y M}$ (i)

We specialize to:

$$
\begin{equation*}
" \mathcal{N}=4 \mathrm{SYM} \equiv(\overbrace{\mathfrak{g} \equiv \mathfrak{s u}(N)}^{\text {Lie algebra }}, \overbrace{A, \phi, \lambda, \psi}^{\text {fields }}, \overbrace{\mathrm{YMM}^{\prime}, \tau_{\mathrm{YM}}}^{\text {parameters }}, \overbrace{\mathscr{L}_{\mathcal{N}=4}}^{\text {Lagrangian Mink }} 4 \tag{10}
\end{equation*}
$$

Theorem

$\operatorname{Lie}_{\xi} \mathscr{L}_{\mathcal{N}=4}$ (with $\xi \in \mathfrak{p s u}(2,2 \mid 4)$) is d-exact

$\mathcal{N}=4$ SYM (ii)

$$
\begin{aligned}
& " \mathcal{N}=4 \mathrm{SYM} " \equiv(\overbrace{\mathfrak{g} \equiv \mathfrak{s u}(N)}^{\text {Lie algebra }}, \overbrace{A, \phi, \lambda, \psi}, \\
& \overbrace{\mathrm{~b}, \ldots}^{\text {fields }}, \overbrace{\mu_{\mathcal{D}} \equiv \prod_{\text {YM }}, \tau_{\mathrm{YM}}}^{\text {integral }}, \\
& \text { ghest fields } \\
& \text { measure over the field space }
\end{aligned}
$$

Theorem

$\operatorname{Lie}_{\xi} \mu_{\mathcal{D}}=0$ (with $\left.\xi \in \mathfrak{p s u}(2,2 \mid 4)\right)$

Planar Limit

> Consider the planar limit ['t Hooft, 1974]

- $\mathscr{G}^{M}(x) \equiv \sum_{\ell} \frac{1}{N^{\ell}} \sum_{I} f_{I \ell}(x) \lambda^{I} \in \mathbb{R}\left(\left(\lambda, \frac{1}{N}\right)\right)$
- $\mathscr{G}^{M}(x) \equiv \sum_{\ell} \frac{1}{N^{\ell}} \mathscr{G}_{\ell}(\lambda)$ where we interpret $\mathscr{C}_{\ell}(\lambda)$ as the sum of all the correlation functions associated the Feynman diagrams that can be drawn on a genus ℓ surface

Planar Limit

If we identify $\mathrm{g}_{\text {string }}=N^{-1}$, we have

$$
\begin{equation*}
\mathscr{G}^{M}(x) \equiv \sum_{m} \mathrm{~g}_{\text {string }}^{m} \mathscr{G}_{m}(x) \tag{12}
\end{equation*}
$$

We are dealing with free strings in a curved background!

This is just one example of the celebrated AdS/CFT duality [Maldacena, 1997], [Gubser, Klebanov and Polyakov, 1998], [Witten, 1998]
string theory partition function
$\overbrace{\mathscr{Z}_{\text {strings }}\left[\phi,\left.\phi\right|_{\partial \mathcal{M}} \equiv \phi_{0}\right]}=$ generator of connected CFT correlators $\overbrace{\left\langle\exp \left(-\phi_{0} \cdot \mathcal{O}\right)\right\rangle_{\mathrm{CFT}, \partial \mathcal{M}}}$

Planar $\mathcal{N}=4$ SYM and Integrability

For $\ell=0, M=2$ we have:

$$
\begin{equation*}
\mathcal{O}=\prod_{i=1}^{n} \operatorname{Tr}\left(\prod_{j} \mathcal{D}^{j} \text { Field }_{j}\right) \tag{13}
\end{equation*}
$$

Planar $\mathcal{N}=4$ SYM and Integrability

Theorem [Minahan and Zarembo, 2002]

Let \mathcal{O} be a single-trace operator of the following form:

$$
\begin{equation*}
\mathcal{O}_{i_{1}, \ldots, i_{m}} \propto \operatorname{Tr}\left(\Phi_{i_{1}} \ldots \Phi_{i_{m}}\right) \tag{15}
\end{equation*}
$$

where each Φ is a LC of scalar fields and let $\Gamma^{(1)}$ the one-loop anomalous dimension matrix. We have:

$$
\begin{equation*}
\Gamma^{(1)}=\mathbf{H}_{\mathfrak{s o}(6)} \tag{16}
\end{equation*}
$$

$$
W=\text { "magnon" }
$$

where $\mathbf{H}_{\mathbf{s o}(6)}$ is the hamiltonian of a $\mathrm{SO}(6)$ spin-chain with m sites in one dimension.

Planar $\mathcal{N}=4$ SYM and Integrability

Theorem [Minahan and Zarembo, 2002]

Let \mathcal{O} be a single-trace operator of the following form:

$$
\begin{equation*}
\mathcal{O}_{i_{1}, \ldots, i_{m}} \propto \operatorname{Tr}\left(\Phi_{i_{1}} \ldots \Phi_{i_{m}}\right) \tag{15}
\end{equation*}
$$

where each Φ is a LC of scalar fields and let $\Gamma^{(1)}$ the one-loop anomalous dimension matrix. We have:

$$
\begin{equation*}
\Gamma^{(1)}=\mathbf{H}_{\mathfrak{s o}(6)} \tag{16}
\end{equation*}
$$

The model is integrable, we have that the whole dynamics is encoded in a two-particle S-matrix, i.e.:

$$
\begin{align*}
& \mathcal{S}_{\mathfrak{s o}(6)}: \operatorname{Mod}_{\mathfrak{s o}(6)} \otimes \operatorname{Mod}_{\mathfrak{s o}(6)} \\
& \quad \rightarrow \operatorname{Mod}_{\mathfrak{s o}(6)} \otimes \operatorname{Mod}_{\mathfrak{s o}(6)} \tag{17}
\end{align*}
$$

i.e. an intertwiner operator between fundamental modules
where $\mathbf{H}_{\mathfrak{s o}(6)}$ is the hamiltonian of a $\mathrm{SO}(6)$ spin-chain with m sites in one dimension.

Planar $\mathcal{N}=4$ SYM and Integrability

Theorem

Let \mathcal{O} be a single-trace operator of the following form:

$$
\begin{equation*}
\mathcal{O}_{i_{1}, \ldots, i_{m}} \propto \operatorname{Tr}\left(\Phi_{i_{1}} \ldots \Phi_{i_{m}}\right) \tag{18}
\end{equation*}
$$

where each Φ is a LC of the whole $\mathfrak{p s u}(2,2 \mid 4)$ multiplet and let $\Gamma^{(1)}$ the one-loop anomalous dimension matrix. We have:

$$
\begin{equation*}
\Gamma^{(1)}=\mathbf{H}_{\bar{p} \mathfrak{p u}(2,2)^{2}} \tag{19}
\end{equation*}
$$

where $\mathbf{H}_{\overline{\mathrm{psu}}(2,2)^{2}}$ is the hamiltonian of a spin-chain with centrally extended $\mathfrak{p s u}(2,2)^{2}$ symmetry with m sites in one dimension.

Planar $\mathcal{N}=4$ SYM and Integrability

Theorem

Let \mathcal{O} be a single-trace operator of the following form:

$$
\begin{equation*}
\mathcal{O}_{i_{1}, \ldots, i_{m}} \propto \operatorname{Tr}\left(\Phi_{i_{1}} \ldots \Phi_{i_{m}}\right) \tag{18}
\end{equation*}
$$

where each Φ is a LC of the whole $\mathfrak{p s u}(2,2 \mid 4)$ multiplet and let $\Gamma^{(1)}$ the one-loop anomalous dimension matrix. We have:

$$
\begin{equation*}
\Gamma^{(1)}=\mathbf{H}_{\overline{p s u}(2,2)^{2}} \tag{19}
\end{equation*}
$$

where $\mathbf{H}_{\overline{\mathrm{psu}}(2,2)^{2}}$ is the hamiltonian of a spin-chain with centrally extended $\mathfrak{p s u}(2,2)^{2}$ symmetry with m sites in one dimension.

Planar $\mathcal{N}=4$ SYM and Integrability

Theorem

Let \mathcal{O} be a single-trace operator of the following form:

$$
\begin{equation*}
\mathcal{O}_{i_{1}, \ldots, i_{m}} \propto \operatorname{Tr}\left(\Phi_{i_{1}} \ldots \Phi_{i_{m}}\right) \tag{18}
\end{equation*}
$$

where each Φ is a LC of the whole $\mathfrak{p s u}(2,2 \mid 4)$ multiplet and let $\Gamma^{(1)}$ the one-loop anomalous dimension matrix. We have:

$$
\begin{equation*}
\Gamma^{(1)}=\mathbf{H}_{\overline{p s u}(2,2)^{2}} \tag{19}
\end{equation*}
$$

where $\mathbf{H}_{\overline{\mathfrak{p s u}}(2,2)^{2}}$ is the hamiltonian of a spin-chain with centrally extended $\mathfrak{p s u}(2,2)^{2}$ symmetry with m sites in one dimension.

Wilson Loops

Fact [Drukker, Kawamoto, 2006]:
computations of Wilson loop deformations (or insertions) can be mapped to a spin chain!

This fact was an evidence of previous physical situations, when some dofs were added to $\mathcal{N}=4$ SYM ...

Theorem [Okamura, Takayama, Yoshida, 2005]

Let $\mathscr{L}_{\mathcal{N}=4}+\mathscr{L}_{\text {defect }}$ be the total lagrangian form for the dCFT coupled to $\mathcal{N}=4$ SYM that is dual to $\mathrm{AdS}_{5} \times S^{5}$ bisected by an $\mathrm{AdS}_{4} \times S^{2}$ brane. It follows that:

$$
\begin{equation*}
\boldsymbol{\Gamma}_{\mathrm{SU}(2)}^{(1)}=\mathbf{H}_{\text {Heis }}^{(\mathrm{open})}+2\left(1-\hat{\mathbf{Q}}_{1}^{W}-\hat{\mathbf{Q}}_{L}^{W}\right) \tag{20}
\end{equation*}
$$

Wilson Loops

Fact [Drukker, Kawamoto, 2006]: computations of Wilson loop deformations (or insertions) can be mapped to a spin chain!
... but in $\mathcal{N}=4$ we naturally have Wilson loops, so nothing more is needed:

Theorem [Drukker, Kawamoto, 2006]

Let $\mathscr{L}_{\mathcal{N}=4}$ be the total lagrangian form for $\mathcal{N}=4$ SYM and let $W\left[\mathcal{O}_{1} \ldots \mathcal{O}_{m}\right]$ be the insertion of $m \mathrm{SU}(2)$ local operators on a $1 / 2-\mathrm{BPS}$ Wilson loop. It follows that:

$$
\begin{equation*}
\boldsymbol{\Gamma}_{\mathrm{SU}(2)}^{(1)}=\mathbf{H}_{\mathrm{Heis}}^{(\text {open })}+2\left(1-\hat{\mathbf{Q}}_{1}^{\phi^{6}}-\hat{\mathbf{Q}}_{L}^{\phi^{6}}\right) \tag{21}
\end{equation*}
$$

