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N = 4 SYM

Just a fast introduction to N = 4 SYM:

“N = 4 SYM” ≡

 Lie algebra︷ ︸︸ ︷
g ≡ su(N),

fields︷ ︸︸ ︷
A,φ, λ, ψ,

parameters︷ ︸︸ ︷
gYM, τYM,

Lagrangian Mink4 4-form︷ ︸︸ ︷
LN=4

 (1)

> su(N) gauge theory with matter

> psu(2, 2|4) invariant
> superconformal at the quantum level [Sohnius and West, 1981] [Seiberg, 1988]

Solve the theory? (
{
GM (x)

}
)
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N = 4 SYM Dynamics

> Use the conformal algebra so(2, 4) to constrain the correlation functions

〈Oi(x)Oj(y)〉 ∝ d−2∆i
xy , 〈Oi(x)Oj(y)Ok(z)〉 ∝

Cijk

d
∆i+∆j−∆k
xy d

∆j+∆k−∆i
yz d

∆k+∆i−∆j
zx

(2)

Data of the theory

“N = 4 SYM” = {∆i, Cijk} (3)

where D • Oi = ∆iOi
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N = 4 SYM Dynamics

> Consider the planar limit [’t Hooft, 1974]

Definition

Let N = 4 SYM be the theory defined above. We call planar limit of the theory the

following:

N → ∞, gYM → 0

λ ≡ g2YMN finite
(4)

GM (x) ≡
∑
m

1

Nm
Gm(λ) ≡ “genus m” diagrams
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N = 4 SYM Dynamics

We focus on m = 0 (strictly “planar”) [Beisert et al., 2010]
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Integrable 2PFs

For ∆i we have nice news [Beisert, 2005]:

D • O ≡


trivial︷︸︸︷
ΓΓΓ(0) +

“one-loop” anom. dimensions︷︸︸︷
ΓΓΓ(1) + . . .

 • O =

∆(0)O + Hpsu � O + . . .

The dynamics of the spin chain is encoded in a

2-particle S-matrix, SBeisert

〈ZZWZWZZWZZW 〉 ⇒

W = “magnon”
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Integrable 3PFs

What about Cijk?

Thanks to the AdS/CFT correspondence

[Maldacena, 1997], [Gubser, Klebanov, Polyakov,

1998], [Witten, 1998] we have naturally a string

dual to three-point functions:

Figure: Classical “pair of pants”
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Integrable 3PFs

In our setting (AdS/CFT/Spin chains) we can

see the 3PF as the observable describing the

scattering of three spin chains, each with its

own excitations (“magnons”) that can

propagate.

Figure: We attach a spin chain on

every operator
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Integrable 3PFs

In our setting (AdS/CFT/Spin chains) we can

see the 3PF as the observable describing the

scattering of three spin chains, each with its

own excitations (“magnons”) that can

propagate.

The so-called BKV prescription [Basso, Komatsu,

Vieira, 2015] consists in the cutting of the world-

sheet in two hexagonal patches

Figure: BKV cutting of the worldsheet
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Integrable 3PFs

In our setting (AdS/CFT/Spin chains) we can

see the 3PF as the observable describing the

scattering of three spin chains, each with its

own excitations (“magnons”) that can

propagate.

The so-called BKV prescription [Basso, Komatsu,

Vieira, 2015] consists in the cutting of the world-

sheet in two hexagonal patches

psu(2, 2)2 → psu(2, 2)diag ' psu(2, 2) (5) Figure: BKV cutting of the worldsheet
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Integrable 3PFs

How can we reconstruct the structure constant?

> We have a “real”, physical set of excitations of the a single spin chain, that we can

group as a bi-partition (α, α)

BKV Conjecture

Cijk ≡
∫∑
β

∑
{α},{α} partitions

w(α, α)H{α,β}H{α,β} (6)
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Integrable 3PFs

How can we reconstruct the structure constant?

> We have a set β of “mirror”, virtual excitations arising from the cutting/gluing

procedure

BKV Conjecture

Cijk ≡
∫∑
β

∑
{α},{α} partitions

w(α, α)H{α,β}H{α,β} (7)
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Integrable 3PFs

A new conjecture

The central takehome message here is that:

Cijk ⇔ “tesselation”

of a Riemann surface
=

product of “bootstrapable”

hexagonal form factors

Definition

Let hA1 Ȧ1...AN ȦN be the creation amplitude for N
magnons on a single hexagon edge.

We have:

hA1...AN = cfermion cdynamic

〈
ȦN . . . Ȧ1

∣∣SBeisert

∣∣A1 . . . AN

〉
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Wilson Loops

Question [Kim, Kiryu, 2018]: can we

extend the hexagon procedure to an

open string setting?
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Wilson Loops

Question [Kim, Kiryu, 2018]: can we

extend the hexagon procedure to an

open string setting?

We can consider an open string

worldsheet ending on ∂AdS5 ' Mink4
describing a loop C (dual to a Wilson

loop, [Maldacena, 1998])

Definition

Let C ⊂ Mink4 a closed path. Considering the

space of fields of N = 4 SYM, we define as

1/2-BPS Wilson loop the following quantity:

W [C] ≡ P exp
(∮

C
ıA · ds+ ~φ · ~n|ds|

)
,

~φ · ~n = φjδj
6 = φ6

(8)
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Wilson Loops

We know [Okamura, Takayama, Yoshida, 2005],

[Drukker, Kawamoto, 2006] that Wilson loop’s

correlators admit an open spin chain

representation!
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Wilson Loops

What is the translation of BKV cutting in the

open string setting?

We have three edges that are physical (end of

the OS) and three edges that are associated to

the propagation of the OS.
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Wilson Loops

(open) cutting = |B〉-contraction
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Wilson Loops

BKV Conjecture revisited [Kim, Kiryu, 2017], [Kiryu,

Komatsu, 2018]

|B〉 ≡
∑
k

bk |ψk〉 ≡ exp

(
1

2

∫
K(q) a†q a

†
−q

)
|0〉

C(BPS)
ijk ≡

∫∑
β

bβ1bβ2bβ3H
{β}

where q is the mirror momentum and K(q) is the analitically continued

reflection matrix (R)
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Wilson Loops

BKV Conjecture revisited [Kim, Kiryu, 2017], [Kiryu,

Komatsu, 2018]

C•◦◦
ijk ≡

∫∑
β

bβ1bβ2bβ3

∑
{α+},{α−} partitions

R here!︷ ︸︸ ︷
wRe(α+, α−)H{α+, α− β}
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Wilson Loops

> [Cavaglià, Gromov, Levkovich-Maslyuk,

2018] analysed a three-cusped Wilson loop

in the Q-functions framework (see [Gromov,

Kazakov, Leurent, Volin, 2013]),

encountering massive simplifications

Definition

Let {θi ; φi} be the internal and physical angles

defining the cusp and g ≡
√
λ

4π
the ’t Hooft

coupling. We define as ladder limit the

following:

θi → ı∞, g → 0

ĝi ≡
g

2
e−ıθi/2 finite
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Wilson Loops

Learn from [Correa, Maldacena, Sever,

2012], [Drukker, 2012]

> Consider a Wilson loop with one

insertionW [Tr
(
ZL

)
(0)], in the large

L limit: this form an open spin

chain vacuum

> Fix the R matrix

> “Open-closed string duality”

(space-time flip to the mirror theory):

boundary condition → |B〉
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Wilson Loops

Learn from [Correa, Maldacena, Sever,

2012], [Drukker, 2012]

> Consider a Wilson loop with one

insertionW [Tr
(
ZL

)
(0)], in the large

L limit: this form an open spin

chain vacuum

> Fix the R matrix

> “Open-closed string duality”

(space-time flip to the mirror theory):

boundary condition → |B〉

R = R0(p)ŜBeisert
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Wilson Loops

Learn from [Correa, Maldacena, Sever,

2012], [Drukker, 2012]

> Consider a Wilson loop with one

insertionW [Tr
(
ZL

)
(0)], in the large

L limit: this form an open spin

chain vacuum

> Fix the R matrix

> “Open-closed string duality”

(space-time flip to the mirror theory):

boundary condition → |B〉

R =
1

σB(p)σ(p,−p)
1 + (x−)2

1 + (x+)2
ŜBeisert

σB(p) = eıχ(x
+)−ıχ(x−)

χ(x) =

∮
dz

2πı

1

x− z
log

(
sinh

(
2πg(z + 1

z
)
)

2πg(z + 1
z
)

)
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Wilson Loops

Learn from [Correa, Maldacena, Sever,

2012], [Drukker, 2012]

> Consider a Wilson loop with one

insertionW [Tr
(
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)
(0)], in the large

L limit: this form an open spin
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> Fix the R matrix

> “Open-closed string duality”

(space-time flip to the mirror theory):
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R =
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1 + (x−)2

1 + (x+)2
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σB(p) = eıχ(x
+)−ıχ(x−)

χ(x) =

∮
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2πı

1

x− z
log

(
sinh

(
2πg(z + 1

z
)
)

2πg(z + 1
z
)

)

KAḂCḊ(q) =
(
R−1(z±)

)AḂ

EḞC
EḞCḊ
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Wilson Loops

Learn from [Correa, Maldacena, Sever,

2012], [Drukker, 2012]

> At this point introduce two cusp

angles {θ, φ} that rotate one of the

two boundary

> Compute the ground state energy

trough TBA ansatz ([Yang, Yang, 1969],

[Zamolodchikov, 1990], [Dorey, Tateo,

1996], ...)

> Take the L→ 0 limit to get the cusp

anomalous dimension

m = Diag
(
eıθ, e−ıθ, eıφ, e−ıφ

)

RAḂ
CḊ 7→

(
m−1

)A
Em

F
C(R)

EḂ
FḊ
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Wilson Loops

In the three-cusped Wilson loop, we have three

different boundary states |B〉i ≡ B(θi, φi), each
one specified by K(q, θi, φi) of [Correa,
Maldacena, Sever, 2012], [Drukker, 2012]

Point of view of [Kim, Kiryu, Komatsu,

Nishimura, 2017]: no local operators, structure

constant of boundary changing operators
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Wilson Loops

In the three-cusped Wilson loop, we have three

different boundary states |B〉i ≡ B(θi, φi), each
one specified by K(q, θi, φi) of [Correa,
Maldacena, Sever, 2012], [Drukker, 2012]

Point of view of [Kim, Kiryu, Komatsu,

Nishimura, 2017]: no local operators, structure

constant of boundary changing operators

PURE MIRROR THEORY!
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Perspectives

Some starting point:

…

> The [Cavaglià, Gromov, Levkovich-Maslyuk,

2018] results are obtained in the ladder limit

> The QSC perspectives underlined a

profound difference between C•◦◦ (and its

generalization C••◦) and C•••
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from the beginning on this limit
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Perspectives

Some starting point:

…

> The [Cavaglià, Gromov, Levkovich-Maslyuk,

2018] results are obtained in the ladder limit

> The QSC perspectives underlined a

profound difference between C•◦◦ (and its

generalization C••◦) and C•••

Some interesting features of the

hexagon approach:

� The hexagon computations does not rely

from the beginning on this limit

� From the hexagon point of view, turning one,

two or three ĝi is not a profound change

(some effects have (?) to appear in the

resummation)
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Contact

Deutsches Elektronen- Davide Lai
Synchrotron DESY 0000-0002-9294-3908
www.desy.de DESY Theory Group

davide.lai@desy.de
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Backup Slides

Gauge theory

SYM (i)

> Gauge theory

(g ≡ Lie (G) , 〈·, ·〉), “(Gauge) fields” A ≡ σ (P), with π(A) : P → M

> ... with some matter

X | Iso (X) = G, “Fields” φ ≡ σ (P ×G X), with π(φ) : P ×G X → M

“Potential” ≡ V : X → R, G-invariant map
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Gauge theory

SYM (ii)

... that is also Super !

> We can introduce “dual fields”:

Dual (A) ≡ λ ≡ σ
(
P ×G

(
g⊗ΠF2∗))

Dual (φ) ≡ σ
(
φ∗

(
P ×G

(
TX ⊗F ΠF2∗)))
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Gauge theory

SYM (iii)

With these ingredients we can construct a supersymmetric lagrangian:

L =

{
−1

2
|FA|2 +

〈
dAφ,dAφ

〉
− φ∗‖gradW‖2 − 2φ∗|µ|2 + fermions

}
,

V = ‖W‖2 + 2|µ|2
(9)
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Gauge theory

N = 4 SYM (i)

We specialize to:

“N = 4 SYM” ≡

 Lie algebra︷ ︸︸ ︷
g ≡ su(N),

fields︷ ︸︸ ︷
A,φ, λ, ψ,

parameters︷ ︸︸ ︷
gYM, τYM,

Lagrangian Mink4 4-form︷ ︸︸ ︷
LN=4

 (10)

Theorem

LieξLN=4 (with ξ ∈ psu(2, 2|4)) is d-exact
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Gauge theory

N = 4 SYM (ii)

“N = 4 SYM” ≡


Lie algebra︷ ︸︸ ︷

g ≡ su(N),

fields︷ ︸︸ ︷
A,φ, λ, ψ,

integral measure over the field space︷ ︸︸ ︷
µD ≡

∏
fields

Dfield

ghost fields︷ ︸︸ ︷
b, . . . ,

parameters︷ ︸︸ ︷
gYM, τYM,

(quantum) Lagrangian Mink4 4-form︷ ︸︸ ︷
L̂N=4


(11)

Theorem

LieξµD = 0 (with ξ ∈ psu(2, 2|4))
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Planar limit

Planar Limit

> Consider the planar limit [’t Hooft, 1974]

G M (x) ≡
∑̀ 1

N `

∑
I

fI`(x)λ
I ∈ R

((
λ,

1

N

))

G M (x) ≡
∑̀ 1

N `
G`(λ) where we interpret G`(λ) as the sum of all the correlation functions

associated the Feynman diagrams that can be drawn on a genus ` surface
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Planar limit

Planar Limit

If we identify gstring = N−1, we have

G M (x) ≡
∑
m

gmstringGm(x) (12)

We are dealing with free strings in a curved

background!

This is just one example of the celebrated

AdS/CFT duality [Maldacena, 1997], [Gubser,

Klebanov and Polyakov, 1998], [Witten, 1998]

string theory partition function︷ ︸︸ ︷
Zstrings [φφφ, φφφ|∂M ≡ φφφ0] =

Zstrings

generator of connected CFT correlators︷ ︸︸ ︷
〈exp(−φφφ0 · O)〉CFT,∂M

DESY. | Hexagonalization of WL | Davide Lai | Hamburg, 29.09.2022 Page 26

http://creativecommons.org/licenses/by/4.0/


Backup Slides

Integrable Spin chains in N = 4 SYM

Planar N = 4 SYM and Integrability
For ` = 0,M = 2 we have:

O =

n∏
i=1

Tr

∏
j

DjFieldj

 (13)

D • O ≡


trivial, from dimensional analysis︷︸︸︷

ΓΓΓ(0) +

“one-loop” anomalous dimensions︷︸︸︷
ΓΓΓ(1) + . . .

 • O =

∆(0)O + Hpsu � O + . . .

(14)

DESY. | Hexagonalization of WL | Davide Lai | Hamburg, 29.09.2022 Page 27

http://creativecommons.org/licenses/by/4.0/


Backup Slides

Integrable Spin chains in N = 4 SYM

Planar N = 4 SYM and Integrability

Theorem [Minahan and Zarembo, 2002]

Let O be a single-trace operator of the

following form:

Oi1,...,im ∝ Tr (Φi1 . . .Φim) (15)

where each Φ is a LC of scalar fields and

let ΓΓΓ(1) the one-loop anomalous dimension

matrix. We have:

ΓΓΓ(1) = Hso(6) (16)

where Hso(6) is the hamiltonian of a SO(6)
spin-chain with m sites in one dimension.

〈ZZWZWZZWZZW 〉 ⇒

W = “magnon”
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Integrable Spin chains in N = 4 SYM

Planar N = 4 SYM and Integrability

Theorem [Minahan and Zarembo, 2002]

Let O be a single-trace operator of the

following form:

Oi1,...,im ∝ Tr (Φi1 . . .Φim) (15)

where each Φ is a LC of scalar fields and

let ΓΓΓ(1) the one-loop anomalous dimension

matrix. We have:

ΓΓΓ(1) = Hso(6) (16)

where Hso(6) is the hamiltonian of a SO(6)
spin-chain with m sites in one dimension.

The model is integrable, we have that

the whole dynamics is encoded in a

two-particle S-matrix, i.e.:

Sso(6) : Modso(6) ⊗Modso(6)

→ Modso(6) ⊗Modso(6)
(17)

i.e. an intertwiner operator between fun-

damental modules
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Integrable Spin chains in N = 4 SYM

Planar N = 4 SYM and Integrability

Theorem

Let O be a single-trace operator of the following

form:

Oi1,...,im ∝ Tr (Φi1 . . .Φim) (18)

where each Φ is a LC of the whole psu(2, 2|4)
multiplet and let ΓΓΓ(1) the one-loop anomalous

dimension matrix. We have:

ΓΓΓ(1) = Hpsu(2,2)2 (19)

where Hpsu(2,2)2 is the hamiltonian of a spin-chain

with centrally extended psu(2, 2)2 symmetry with m
sites in one dimension.

[Beisert, 2005]

psu(2, 2|4) →
(psu(2, 2))2 n u(1) ↪→

(psu(2, 2))2 nR3
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Integrable Spin chains in N = 4 SYM

Planar N = 4 SYM and Integrability

Theorem

Let O be a single-trace operator of the following

form:

Oi1,...,im ∝ Tr (Φi1 . . .Φim) (18)

where each Φ is a LC of the whole psu(2, 2|4)
multiplet and let ΓΓΓ(1) the one-loop anomalous

dimension matrix. We have:

ΓΓΓ(1) = Hpsu(2,2)2 (19)

where Hpsu(2,2)2 is the hamiltonian of a spin-chain

with centrally extended psu(2, 2)2 symmetry with m
sites in one dimension.

[Beisert, 2005]

psu(2, 2|4) →
(psu(2, 2))2 n u(1) ↪→

(psu(2, 2))2 nR3

The centrally extended

algebra knows about

E and g!
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Integrable Spin chains in N = 4 SYM

Planar N = 4 SYM and Integrability

Theorem

Let O be a single-trace operator of the following

form:

Oi1,...,im ∝ Tr (Φi1 . . .Φim) (18)

where each Φ is a LC of the whole psu(2, 2|4)
multiplet and let ΓΓΓ(1) the one-loop anomalous

dimension matrix. We have:

ΓΓΓ(1) = Hpsu(2,2)2 (19)

where Hpsu(2,2)2 is the hamiltonian of a spin-chain

with centrally extended psu(2, 2)2 symmetry with m
sites in one dimension.

[Beisert, 2005]

SBeisert : Modpsu ⊗Modpsu

→ Modpsu ⊗Modpsu
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Spin chains

Wilson Loops

Fact [Drukker, Kawamoto, 2006]:

computations of Wilson loop

deformations (or insertions) can be

mapped to a spin chain!

This fact was an evidence of previous

physical situations, when some dofs

were added to N = 4 SYM ...

Theorem [Okamura, Takayama, Yoshida,

2005]

Let LN=4 + Ldefect be the total lagrangian form

for the dCFT coupled to N = 4 SYM that is dual

to AdS5 × S5 bisected by an AdS4 × S2 brane.

It follows that:

ΓΓΓ
(1)

SU(2) = H
(open)
Heis + 2

(
1− Q̂

W
1 − Q̂

W
L

)
(20)
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Spin chains

Wilson Loops

Fact [Drukker, Kawamoto, 2006]:

computations of Wilson loop

deformations (or insertions) can be

mapped to a spin chain!

... but in N = 4 we naturally have

Wilson loops, so nothing more is

needed:

Theorem [Drukker, Kawamoto, 2006]

Let LN=4 be the total lagrangian form for

N = 4 SYM and letW [O1 . . .Om] be the

insertion of m SU(2) local operators on a

1/2-BPS Wilson loop. It follows that:

ΓΓΓ
(1)

SU(2) = H
(open)
Heis + 2

(
1− Q̂

φ6

1 − Q̂
φ6

L

)
(21)
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