

FTrigger Performance

Introduction LVL1 Trigger Performance Comparison to HLT Trigger Summary

stefan.rieke@cern.ch, ATLAS-D Workshop Sep 2007

Physic signatures:

I.e.: mSUGRA decay chain

- mSUGRA:

 - R-Parity violated \rightarrow Neutrino. I.e: $X_1^0 \rightarrow l^+ l^- v$
- Standard model → Neutrino
 I.e.: W→ev

- Detector acceptance (cracks)
- Hot cells
- Noise (coherent)
- Beam background
- Pit background

High ₽_T performance highly not trivial!

Different approaches for the arrow T Calculation at trigger level:

LVL1:

- ~7200 EM & Had trigger tower ($\Delta \eta^* \Delta \Phi = 0, 1^* 0, 1$)
- Only calorimeter information is used

LVL2:

- Need Muon on LVL2
- Apply correction for the Muon p_T to LVL1 $\not\!\!\!\!/_T$

EF, 2 Method available:

- 1. Loop over all calorimeter cells and recalculate arrow T (default)
- 2. FEB sums are used to recalculate $\not\!\!E_T$

Inclusive LVL1 Frigger rates

- Compare Athena Ver. 11 & 12:

• Changes

- Generator
- Detector geometry
- LVL1 Simulation
- Biggest contribution from: Generator (Pythia):
 - Version: $6.3 \rightarrow 6.4$
 - Parton shower simulation
 - Underlying event generation

Note: no PileUp simulation included

Motivation:

Have a physics channel with more than one physics object

• Problem:

Rate too high for incl. trigger

- Reduce Rate by using less inclusive trigger
- But: keep Selection efficiency for the physics channel
- Example of Signature:

 - $\not{\!\!\! P}_T$ + Ele: Ele $E_T \ge 20 \text{ GeV}$ (not isolated)

- σ(E_{x,y}) calc.: Truth info. from interacting particles used
- \[
 \Foregamma \]
 resolution
 dependence on the
 topology of the
 physics process
- SUSY Points: contains lot of different decay chains

Stefan Rieke — ATLAS-D Workshop Sep 2007

LVL1 Frigger efficiency

• Efficiency for: $pp \rightarrow W + X \rightarrow ev + X$

- Problem: LVL1 turn on curve shows substructure
- Detailed studies: Problem in the hadronic energy scale
- SUSY: Slope of the turn on curve depends on the SUSY parameter point

Before using LVL1 FT trigger: energy scale has to be understood

Comparison to HLT: arrow T rate & resolution

● Compare LVL1 & HLT ₽⊤ Rates

Threshold	Rate [Hz]	
[GeV]	LVL1	HLT
20	10500	~15000
50	10	~0.2
80	~6	~0.02

- Efficient rate reduction for higher

 \mathcal{F}_T values
- Resolution (EF):
 - Looks ok (use cells).
- Bias:
 - not negligible
 - not yet understood, work in progress

Summary

- Source of ₽_T signatures comes not only from the topology of physics process

- HLT:
 - Efficient rate reduction wrt. LVL1
 - Bias in arrow T resolution is not negligible

##