Search for 2nd generation Leptoquarks with ATLAS at the LHC

ATLAS D-Workshop DESY Zeuthen 21.9.2007

Gernot Krobath

LMU München

Gernot Krobath Ludwig-Maximilians-Universität München E-Mail: gernot.krobath@physik.uni-muenchen.de

Overview

- Leptoquarks
- signal and standard model background
- selection variables
- triggering
- exclusion limits
- conclusions and outlook

Gernot Krobath

Leptoquarks

- What are Leptoquarks ?
 - Leptoquarks (LQ) are hypothetical particles, which carry both lepton- and baryon-numbers.
 LQ interactions conserve the lepton- and baryonnumbers separately.
 - LQ have not been observed yet, but many extensions of the Standard Model predict them:
 - superstring-inspired E_6 models
 - Grand Unifying Theories (GUTs)
 - technicolor models
 - etc.

Gernot Krobath

LQ properties

- Neither flavor changing neutral current excesses nor lepton number violation excesses have been observed
 → 1st Assumption: LQ couple only to one generation of quarks and to one generation of leptons of the standard model
- 2nd assumption: LQ interactions are chiral; otherwise LQ would mediate rare decays.
- With the assumptions above there are 14 kinds (mBRW model) of LQ, that differ by:
 - spin (scalar or vector)
 - fermion number F = 3 B + L
 - isospin
 - chirality of the coupling
- LQ carry non-integer charges (\pm 5/3e, \pm 4/3e, \pm 2/3e, \pm 1/3e)
- LQ $\rightarrow \ell^{\pm}$ q or LQ $\rightarrow v$ q

Gernot Krobath

How are LQ produced ?

 only pair production of scalar LQ considered here → single production depends on the unknown Yukawa coupling

 all shown processes do not depend on the (unknown) q-ℓ-LQ coupling → cross-section only

depends on mass of LQ and QCD

- 2nd Generation: LQ \rightarrow q + μ (or q + v_{μ})
- excluded mass limit for 2^{nd} generation LQ: ~ 250 GeV (β =1) β = BR(LQ₂ \rightarrow q + µ)

Signal and Standard Model background

• signal (β=1):

m(LQ) in GeV	σ (NLO) (in pb)
300	10.10000
400	2.24000
600	0.22500
800	0.03780
1000	0.00836
1200	0.00221
1400	0.000655
1600	0.000210
1800	0.0000714

expected $\int L dt$ of the LHC:	
----------------------------------	--

- 1^{st} month at 14 TeV: 5 pb⁻¹
- 1 year at design L: 10 fb⁻¹

• background:

process	$\sigma x BR$ (in pb)		
$Z / \gamma^{*}(\mu\mu) + jets p_{T}^{jet}$	>20GeV 313		
tt (µvj µvj)	9.5		
ZZ (µµ jj)	1.2		
ZW (µµ jj)	1.2		
WW (µv µv)	1.1		

expected number of events: $Z / \gamma^* + jets: 1.6k LQ_{400}: 11.2 LQ_{1200}: 0.01$ $Z / \gamma^* + jets: 3.1M LQ_{400}: 22.4k LQ_{1200}: 22.1$ Gernot Krobath

LMU München

21.09.2007

Selection variables

 2μ (opposite charge) and 2 jets $p_{\tau}^{\mu} > 60 \text{ GeV} (both muons)$ E_{τ}^{jet} > 25 GeV (both jets) μ isolation: in cone (Δ R = 0.4) around muon less than 60 GeV E₋ $S_{T} > 750 \text{ GeV} (\text{for } m_{10} = 400 \text{ GeV})$ dimuonmass > 180 GeV tt (no all-hadronic 5200) LQ m = 400 GeV (sample 6679): St_sum_vs_dimuon_mass tt (no all-hadronic) St sum vs dimuon mass m₁₀ = 400 GeV Entries 997 3500 Entries 2784 in GeV $S_{T} = \Sigma E_{T} \stackrel{\geq}{\underline{0}}_{3000}$ Mean x 220.1 16 Mean x 380.8 Mean y 423.2 Mean y 847.7 3000 RMS x 107.6 20 14 RMS x 218.5 RMS 164.3 RMS y 265.3 0 ഗ് 2500 12 ഹ് 2500 997 0 0 0 0 0 15 10 2000 Integral 997 2000 1500 1500 10 6 1000 1000 500 500 0<u></u> 200 400 600 1600 1800 2000 1800 2000 800 1000 1200 1400

> dimuonmass in GeV 31.4% of LQ events left

7/16

34 tt events left

dimuonmass in GeV

Gernot Krobath

Selection variables II

$$\begin{split} S_{_{T}} \mbox{ cut increases linearly with increasing } m_{_{LQ}} &: \\ m_{_{LQ}} = 300 \mbox{ GeV } S_{_{T}} > 650 \mbox{ GeV } \\ m_{_{LQ}} = 400 \mbox{ GeV } S_{_{T}} > 750 \mbox{ GeV } \\ m_{_{LQ}} = 600 \mbox{ GeV } S_{_{T}} > 950 \mbox{ GeV } \\ m_{_{LQ}} = 800 \mbox{ GeV } S_{_{T}} > 1150 \mbox{ GeV } \\ m_{_{LQ}} = 1200 \mbox{ GeV } S_{_{T}} > 1550 \mbox{ GeV } \end{split}$$

additional cut: reconstructed LQ mass has to be $\pm 75 \text{ GeV}$ around real m_{LQ} for LQ₃₀₀ $\pm 100 \text{ GeV}$ around real m_{LQ} for LQ₄₀₀ $\pm 150 \text{ GeV}$ around real m_{LQ} for LQ₆₀₀ $\pm 200 \text{ GeV}$ around real m_{LQ} for LQ₈₀₀ $\pm 300 \text{ GeV}$ around real m_{LQ} for LQ₁₂₀₀ because detector resolution gets worse for higher momenta 21.09.2007 8/16

Selection variables III

missing E_{T}

additional cut: (missing E_{T}) / S_{T} < 0.1, mainly to suppress the background

16.7% of tt events left survive cut

Gernot Krobath

LMU München

89.0% of LQ events left survive cut

	LQ (v12)	tt (5200,no all-	5115 DY	5151	5985	5987
	m=400GeV	hadronic)	m_>150Gev	Ζ(μμ) σ=	WW	WZ
cuts	σ=2.24 pb	σ=461 pb	σ ≈ 7.7 pb	1662 pb	σ=1.1pb	σ=7.8pb
		603300 (12706				
without cuts	4607 LQ pairs	fully muonic)	19750	99150	34000	37900
+ 2 OS muons	76.32%	8.38%	44.57%	45.71%	2.97%	8.09%
+ 2 jets	76.25%	8.31%	37.80%	34.79%	2.54%	7.72%
Distance(μ_1, μ_2)						
ΔR > 0.2	76.04%	7.50%	37.78%	34.79%	2.53%	7.68%
+ p _T ^µ > 25 GeV	73.04%	1.47%	36.44%	27.67%	0.88%	4.36%
+ E _T > 25 GeV	72.22%	1.41%	9.41%	3.09%	0.18%	2.72%
+ μ /jet exclusion $\Delta R = 0.4$	66.23%	1.24%	9.20%	3.08%	0.17%	2.70%
+ dimuonmass						
> 125 GeV	60.97%	0.39%	9.02%	0.06%	0.10%	0.17%
+ p _T ^µ > 60 GeV	56.37%	0.14%	6.14%	0.03%	0.05%	0.09%
+ S _T > 300 GeV	56.37%	0.12%	3.21%	0.01%	0.02%	0.05%
+ dimuonmass						
> 180 GeV	51.31%	0.09%	2.74%	0.01%	0.02%	0.04%
+ S _T > 750 GeV	31.37%	0.00547%	0.16203%	0.00%	0.00%	0.005%
+ m _{LQ} ±100 GeV	24.24%	0.00199%	0.08101%	0.00%	0.00%	0.003%
+ ME _T /S _T < 0.1	21.55%	0.00050%	0.07595%	0.00%	0.00%	0.000%

Surviving cross-sections

		∫ L dt	surviving σ^*	surviving σ *	surviving σ *	surviving σ^*
		(pb ⁻¹⁾ of	Br (pb) after	Br (pb) after	Br (pb) after	Br (pb) after
	σ*	available	cuts for	cuts for	cuts for	cuts for
process	Br(pb)	sample	m _{LQ} = 300GeV	m _{LQ} = 400GeV	m _{LQ} =600GeV	m _{LQ} =800GeV
ZZ→µµjj(v10)	1.2	23,000	0	0	0	0
			< 2.2 10 ⁻³	< 2.2 10 ⁻³	< 2.2 10 ⁻³	< 2.2 10 ⁻³
			< 2.2 10 ⁻³	< 2.2 10 ⁻³	< 2.2 10 ⁻³	< 2.2 10 ⁻³
WW 5985	24.5	1,338	< 2.2 10 ⁻³	< 2.2 10 ⁻³	< 2.2 10 ⁻³	< 2.2 10 ⁻³
			6.2 10 ⁻⁴	4.1 10 ⁻⁴	2.1 10 ⁻⁴	4.1 10 ⁻⁴
			6.2 10 ⁻⁴	2.1 10 ⁻⁴	< 6.2 10 ⁻⁴	2.1 10 ⁻⁴
ZW 5987	7.8	4,859	< 6.2 10 ⁻⁴	< 6.2 10 ⁻⁴	< 6.2 10 ⁻⁴	2.1 10 ⁻⁴
DV m > 150			0.026	1.3 10 ⁻²	5.1 10 ⁻³	3.1 10 ⁻³
			0.010	6.2 10 ⁻³	2.0 10 ⁻³	1.2 10 ⁻³
GeV 5115	~ 7.7	2,565	0.009	5.8 10 ⁻³	2.0 10 ⁻³	< 1.2 10 ⁻³
			5.2 10 ⁻²	3.0 10 ⁻²	7.7 10 ⁻³	2.3 10 ⁻³
-			8.5 10 ⁻³	8.5 10 ⁻³	4.6 10 ⁻³	2.3 10 ⁻³
tt 5200	461	1,294	3.1 10 ⁻³	1.5 10 ⁻³	2.3 10 ⁻³	7.7 10-4
Leptoquark	40.4	400	4 77	0.70	0.440	
300 GeV	10.1	403 2057	1.//	0.70	0.110	$0.019 + 5_{1}$ cut
400 GeV 600 GeV	0 225	2007	1 11	0.48	0.078	0.010 + mass-cut0.014 + mF /S -
800 GeV	0.0378	116,323		0.10		

Triggering

Trigger efficiency of selected $m_{LQ} = 400$ GeV pair events (after S_T-cut):

L1_Mu40: 96.66%

L2_Mu6: 99.22% EF Mu6: 99.15%

L2_Mu6I: 99.36% EF_Mu6I: 99.22%

L2_Mu20i: 97.44% (no isolation/starts with L1_Mu20) EF_Mu20i: 97.23% (no isolation)

Gernot Krobath

21.09.2007

14/16

Gernot Krobath LMU München

Conclusions

backgrounds suppressed quite well

• high trigger efficiency

 Leptoquarks up to around m_{LQ} = 600 GeV can be discovered or excluded already in the early phase of the LHC

Outlook

• study of pile-up samples

• contributing to dilepton-jets CSC note

analysis with advanced statistical tool TMVA ?