Introduction Basics Application Summary Back-up

PCD P Connor

Monte Carlo techniques Application to QCD

Patrick L.S. CONNOR

Universität Hamburg

21 June 2022

UH 1/26

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE CDCS CENTER FOR DATA AND COMPUTING IN NATURAL SCIENCES

Quotation

« **Monte Carlo** refers to any type of techniques that makes use of **random numbers**, probabilities and statistics **to solve** a problem numerically. »

Hannes JUNG

UH 2/26

Introduction Basics Application

PCD

P Connor

Summary

Motivation

- MC techniques are widely used in physics:
 - deal with high-dimensional problems;
 - often easy to interpret at event level.
- Today we will introduce them
 - first with pedagogical examples,
 - then in the context of Quantum Chromodynamics (QCD).

We will alternate slides and hands-on sessions.

Main source: QCD and MC lectures, by Hannes JUNG

UH H.

PCD

P Connor

Introduction

Application

Summary

Motivation

- MC techniques are widely used in physics:
 - deal with high-dimensional problems;
 - often easy to interpret at event level.
- Today we will introduce them
 - first with pedagogical examples,
 - then in the context of Quantum Chromodynamics (QCD).

• We will alternate slides and hands-on sessions.

Main source: QCD and MC lectures, by Hannes JUNG

Goal

Calculate the following integral:

$$I = \int_{\Omega} f(u) \, \mathrm{d}u \tag{1}$$

for any (more or less smooth) function f.

UH # 3/26

Introduction Basics Application

PCD

P Connor

Summary

Exercises

- Either in plain C++ or in Python with Jupyter notebooks
- Just follow the instructions on the <u>GitHub</u> repository.

Advice: work in pairs

- Formulate your choices loudly.
- Review one another.
- Exchange ideas.

Red block Question!

Grey block

Hands on!

UH #

PCD

P. Connor

Introduction Basics Application Summary

Basics

Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

Application Summary

Back-up

UH 5/26

Basics Definitions

Probability density function (p.d.f.)

The random variable X has p.d.f. g (non-negative, integrable, and normalised to unity) if:

$$\mathbb{P}\left[a \le X \le b\right] = \int_{a}^{b} g(x) \, \mathrm{d}x \tag{2}$$

P. Connor

Introduction

Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling

Application

Summary

Back-up

UH 15/26

Basics Definitions

Probability density function (p.d.f.)

The random variable X has p.d.f. g (non-negative, integrable, and normalised to unity) if:

$$\mathbb{P}\left[a \le X \le b\right] = \int_{a}^{b} g(x) \, \mathrm{d}x \tag{2}$$

Expectation value and variance

e

Given f a function of a random variable X following a p.d.f. g:

expectation value
$$\mathbb{E}[f] = \int_{-\infty}^{+\infty} f(x)g(x) \, \mathrm{d}x$$
 (3)
variance $\mathbb{V}[f] = \mathbb{E}\left[(f - \mathbb{E}[f])^2\right]$ (4)

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling

Conclusion Application

Summary

 $\mathsf{Back}\mathsf{-up}$

UH (1/26)

General form

Given realisations x_i of the random variable X, for $N \to \infty$:

$$\mu \equiv \frac{1}{N} \sum_{i=1}^{N} f(x_i) \longrightarrow \mathbb{E}[f]$$
(5)

Basics Law of Large Numbers

Basics Law of Large Numbers

General form

Given realisations x_i of the random variable X, for $N \to \infty$:

$$\mu \equiv \frac{1}{N} \sum_{i=1}^{N} f(x_i) \longrightarrow \mathbb{E}[f]$$
(5)

Simple form

If
$$x_i \equiv u_i \sim \mathcal{U}[a, b]$$
, for $N \to \infty$:

$$\frac{1}{N}\sum_{i=1}^{N}f(u_i)\longrightarrow \frac{1}{b-a}\int_{a}^{b}f(u) \,\mathrm{d}u \tag{6}$$

PCD

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling

Application Summary

Back-up

UH #

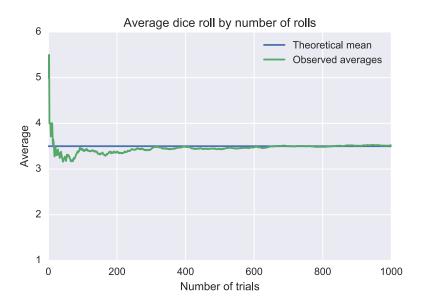
P. Connor

Introduction

Basics Law of Large Numbers MC Random generator Integration generator sampling Application Summary Back-up

> UH #

Basics Law of Large Numbers



Basics MC integration

Apply simple form of LLN

$$I \approx I_{\rm MC} = \frac{b-a}{N} \sum_{i=1}^{N} f(u_i) \tag{7}$$

$$\sigma_{\mathsf{MC}}^{2} = \mathbb{V}[I_{\mathsf{MC}}] = \frac{(b-a)^{2}}{N} \mathbb{V}[f]$$

$$= \frac{(b-a)^{2}}{N^{2}} \sum_{i=1}^{N} (f(u_{i}))^{2} - \frac{1}{N} I_{\mathsf{MC}}^{2}$$
(9)

UH (1) 8/26

P. Connor

PCD

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling

Conclusion

Application

Summary

Basics MC integration

Apply simple form of LLN

$$I \approx I_{\mathsf{MC}} = \frac{b-a}{N} \sum_{i=1}^{N} f(u_i) \tag{7}$$

Question

How to generate random numbers?

PCD

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator

- Importance sampling
- Application
- Summary
- $\mathsf{Back}\mathsf{-up}$

UH # 8/26

Basics

Random number generator

Pseudo random generator for a uniform distribution

Linear congruential generator (e.g. std::rand()) to generate integer numbers in [0, m[.

$$I_{i+1} \equiv aI_i + c \pmod{m} \tag{10}$$

*I*₀ seed *a* multiplier *c* increment *m* modulus

- RANLUX, which may be seen as a linear congruential generator with a smart choice of a, c, m, implemented in TRandom1.
- The Mersenne Twister generator, as implemented in TRandom3 or std::mt19937_64.
- **...**

PCD

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance

sampling Conclusion Application

Summary

Back-up

UH #

Basics

Random number generator

Pseudo random generator for a uniform distribution

Linear congruential generator (e.g. std::rand()) to generate integer numbers in [0, m[.

$$I_{i+1} \equiv aI_i + c \pmod{m} \tag{10}$$

*I*₀ seed *a* multiplier *c* increment *m* modulus

- RANLUX, which may be seen as a linear congruential generator with a smart choice of a, c, m, implemented in TRandom1.
- The Mersenne Twister generator, as implemented in TRandom3 or std::mt19937_64.
- ...

Question

What would be the desired properties for a good pseudo random generator?

PCD

P. Connor

Introduction

Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling

- Application
- Summary
- Back-up

UH

9/26

μi,

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Integration Gaussian generator Importance sampling Conclusion

Application Summary Back-up

> UH 10/26

Exercise #1

Check the correlations of numbers generated with the linear congruential generator and with one of the TRandom classes in ROOT.

P. Connor

Introduction

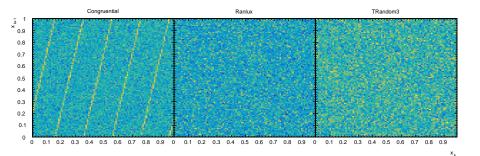
Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion Application Summary

Back-up

UH #10/26

Exercise #1

Check the correlations of numbers generated with the linear congruential generator and with one of the TRandom classes in ROOT.



P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

Application Summary

Back-up

UH 11/26

Exercise #3

Calculate the following integral with the help of MC generators:

 $\int_0^1 3x^2 \, \mathrm{d}x$

and its uncertainty for different values of N.

Basics Integration

(11)

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

Application

Summary

Back-up

UH 11/26

Exercise #3

Calculate the following integral with the help of MC generators:

 $\int_0^1 3x^2 \, \mathrm{d}x$

and its uncertainty for different values of N.

Result

$$N = 10^3: I_{MC} = 1.02013 \pm 0.0274001$$
(12)

$$N = 10^6: I_{MC} = 0.99945 \pm 0.0008942$$
(13)

Basics

Integration

(11)

P. Connor

Introduction

Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion Application Summary Back-up

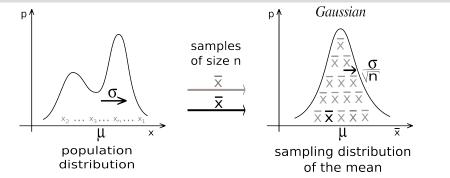
> UH # 12/26

Basics Gaussian generator

Central limit theorem (CLT)

Given N i.i.d. random variables X_i with expected value μ and variance σ^2 , then for $N \to \infty$, the average random variable \bar{X}_N tends to follow a normal distribution:

$$\bar{X}_N \equiv \frac{1}{N} \sum_{i=1}^N X_i \sim \mathcal{N}(\mu, \sigma^2)$$
(14)



P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

Application

Summary

Back-up

UH # 13/26

Exercise #2

Construct a Gaussian random number generator with the help of the CLT and of one of the uniform pseudo random number generators.

Reminder

For $u_i \sim \mathcal{U}[0,1]$, $\mu = N/2$ and $\sigma^2 = N/12$.

Basics Gaussian generator

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC

Random

Integration

Application

Summary

Back-up

Gaussian generator

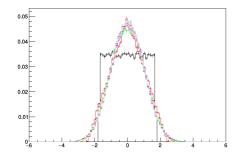
Basics Gaussian generator

Exercise #2

Construct a Gaussian random number generator with the help of the CLT and of one of the uniform pseudo random number generators.

Reminder

For
$$u_i \sim \mathcal{U}[0,1]$$
, $\mu = N/2$ and $\sigma^2 = N/12$.



UH 13/26

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

Application Summary

Back-up

UH 14/26

Question

What if f covers different orders of magnitude? or has a divergency? (e.g. 1/x)

Basics

Importance sampling

Basics Importance sampling

Question

What if f covers different orders of magnitude? or has a divergency? (e.g. 1/x)

Using the general form of LLN

Consider a p.d.f. g such that the x_i s populate more the region(s) of interest:

$$I = \int_{a}^{b} f(u) \, \mathrm{d}u = \int_{a}^{b} \frac{f(x)}{g(x)} g(x) \, \mathrm{d}x = \mathbb{E}\left[\frac{f}{g}\right]$$
(15)

$$\Rightarrow I \approx I_{\rm MC} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{g(x_i)}$$
(16)
$$\sigma_{\rm MC}^2 = \frac{1}{N^2} \sum_{i=1}^{N} \left(\frac{f(x_i)}{g(x_i)}\right)^2 - \frac{1}{N} I_{\rm MC}^2$$
(17)

PCD

P. Connor

Introduction

Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion Application

Summary

Back-up

UH 14/26

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

- Application Summary
- Back-up

UH 15/26

Basics

Importance sampling

Generation of non-uniformly distributed random numbers

Given $u_i \sim \mathcal{U}[0,1]$, the sample x_i are described by the p.d.f. g if:

$$\int_{-\infty}^{x_i} g(x) \, \mathrm{d}x = u_i \int_{-\infty}^{+\infty} g(x) \, \mathrm{d}x \tag{18}$$

P. Connor

Introduction

Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

Summary

Back-up

UH #15/26

Basics

Importance sampling

Generation of non-uniformly distributed random numbers

Given $u_i \sim \mathcal{U}[0,1]$, the sample x_i are described by the p.d.f. g if:

$$\int_{-\infty}^{x_i} g(x) \, \mathrm{d}x = u_i \int_{-\infty}^{+\infty} g(x) \, \mathrm{d}x \tag{18}$$

Exercise #5

 Calculate the following integral (and its uncertainty) using uniformly distributed random numbers (i.e. without importance sampling):

$$\int_{0.0001}^{1} \frac{(1-x)^5}{x} \, \mathrm{d}x \tag{19}$$

- Then, given Eq. 18, show how to draw random numbers with $g(x) \sim \frac{1}{x}$, and repeat this integral with importance sampling.
- Compare with the exact result using the incomplete Beta function.

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

Application Summary

Back-up

UH # 16/26

Basics Importance sampling

Result from exercise #5

• With linear sampling:

$$N = 10^{3}: I_{MC} = 4.85467 \pm 1.23751$$
(20)

$$N = 10^{6}: I_{MC} = 6.90493 \pm 0.098539$$
(21)

$$N = 10^{9}: I_{MC} = 6.92964 \pm 0.00314253$$
(22)

To draw random numbers:

$$x_i = x_{\min} \left(\frac{x_{\max}}{x_{\min}}\right)^{u_i} \tag{23}$$

(24)

Then with importance sampling:

$$V = 10^5 : \quad 6.93396 \pm 0.00992476$$

■ Exact value: 6.92747479226

P. Connor

Introduction

Basics Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

Application Summary

Back-up

UH 17/26

MC integration

Utilise elements of probability theory to calculate integrals.

Basics Conclusion

P. Connor

Introduction

Definitions Law of Large Numbers MC integration Random number generator Integration Gaussian generator Importance sampling Conclusion

Application

Summary

Back-up

UH 17/26

MC integration

Utilise elements of probability theory to calculate integrals.

Other methods

....

Stratified sampling

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{c} f(x) \, \mathrm{d}x + \int_{c}^{b} f(x) \, \mathrm{d}x \tag{25}$$

Subtraction method

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{b} g(x) \, \mathrm{d}x + \int_{a}^{b} \left(f(x) - g(x) \right) \, \mathrm{d}x \tag{26}$$

Hit & Miss (a.k.a. brute force method)

Basics Conclusion

Application

Introduction PDF evolution Cross section calculation

P. Connor

Introduction Basics Application Introduction

PDF evolution Cross section

Summary

Back-up

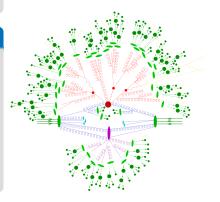
Factorisation

hadronic cross section $\overbrace{\sigma_{pp \to j\text{et}+X}}^{\text{PDFs}} = \sum_{ij \in gq\bar{q}} \overbrace{f_i(x_i, \mu_F^2) \otimes f_j(x_j, \mu_F^2)}^{\text{PDFs}} \\
\otimes \underbrace{\hat{\sigma}_{ij \to j\text{et}+X}\left(x_i, x_j, \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2}, \alpha_S(\mu_R^2)\right)}_{\text{partonic cross section}}$

Phenomenology of MC event generators

interaction = Parton Distribution Function (PDF) \otimes Matrix Element (ME) \otimes Parton Shower (PS) \otimes underlying event (UL) \otimes hadronisation \otimes photon radiation

Application



UH 18/26

Application

Physics case

- First, we will try to better understand the PDFs and their evolution:
 - We will assume a simplistic PDF $f(x, t_0 = m_p) = 3 \frac{(1-x)^5}{x}$.
 - We will use MC integration to calculate this PDF at harder scales t.
- Then, we will consider $gg \rightarrow hX$ and investigate the kinematics of h:
 - First we will neglect the PDF evolution and consider partons directly taken from our simplistic PDF.
 - Then we will combine the PDF evolution for each of the incoming partons and see the impact on the kinematics.

NB: We calculate everything at the lowest order in perturbation theory.

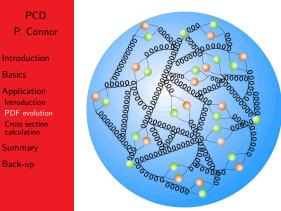
UH #19/26

PCD P Connor

Application

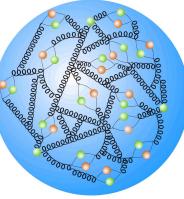
Cross section

Summary



UH 20/26

PCD P. Connor Introduction Basics Application Introduction PDF evolution



Application PDF evolution

Nature of PDFs

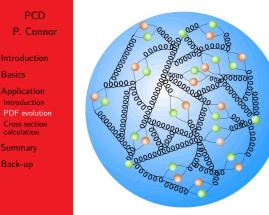
- Complex objects describing the non-perturbative content of the hadron.
- Also contain a perturbative part, whose (collinear) evolution is described by DGLAP equations.
- Parameterised with a non-physical variable, the scale.
- More-or-less universal, to be constrained with real data.

UH 20/26

Cross section

calculation

Summary Back-up



Application PDF evolution

Nature of PDFs

- Complex objects describing the non-perturbative content of the hadron.
- Also contain a perturbative part, whose (collinear) evolution is described by DGLAP equations.
- Parameterised with a non-physical variable, the scale.
- More-or-less universal, to be constrained with real data.

DGLAP equations

$$\frac{\mathrm{d}f_a(x,\mu_F^2)}{\mathrm{d}\ln\mu_F^2} = \sum_{b\in\{q,g\}} \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_S\left(\mu_F^2\right)}{2\pi} f_b\left(\frac{x}{z},\mu_F^2\right) P_{ba}(z)$$
(27)

 $\begin{array}{ll} f_a \ \mbox{PDF for} & \mu_F^2 \ \mbox{factorisation scale} \\ parton \ a \in \{q, g\} & \alpha_S \ \mbox{strong coupling (running)} \\ x \ \mbox{momentum fraction} & P_{ba} \ \mbox{splitting function} \end{array}$

UH 20/26

Iterative expression

From scale t_0 to scale t:

$$f(x,t) = \underbrace{f(x,t_0)\Delta_s(x,t_0,t)}_{\text{evolution without radiation}} + \underbrace{\int \frac{\mathrm{d}z}{z} \int \frac{\mathrm{d}t'}{t'} \Delta_s(x,t',t) P(z) f\left(\frac{x}{z},t'\right)}_{\text{parton splitting}}$$
(28)

with the Sudakov form factor (probability of non-branching):

$$\Delta_s(x, t_0, t) = \exp\left(-\int_x^{z_{\mathsf{M}}} dz \int_{t_0}^t \frac{dt''}{t''} \frac{\alpha_S(t'')}{2\pi} P(z)\right)$$
(29)

PCD P Connor

Introduction

Basics

Application Introduction PDF evolution Cross section calculation

Summary

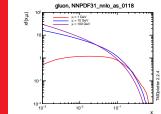
Iterative expression

From scale t_0 to scale t:

$$f(x,t) = \underbrace{f(x,t_0)\Delta_s(x,t_0,t)}_{\text{evolution without radiation}} + \underbrace{\int \frac{\mathrm{d}z}{z} \int \frac{\mathrm{d}t'}{t'} \Delta_s(x,t',t) P(z) f\left(\frac{x}{z},t'\right)}_{\text{parton splitting}}$$
(28)

with the Sudakov form factor (probability of non-branching):

$$\Delta_s(x, t_0, t) = \exp\left(-\int_x^{z_{\mathsf{M}}} \mathrm{d}z \int_{t_0}^t \frac{\mathrm{d}t''}{t''} \frac{\alpha_S(t'')}{2\pi} P(z)\right)$$
(29)



Properties

- Factorisation property is only proven rigorously for a few processes but holds for many others.
- Usually constrained with real data, regularly updated with newer data appearing on the market.

PCD P Connor

Basics Application

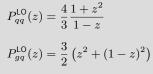
PDF evolution Cross section calculation Summary Back-up

UH

21/26

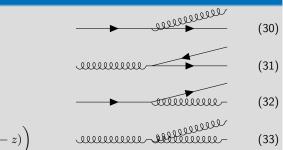
Ĥ

Splitting functions



$$P_{qg}^{\rm LO}(z) = \frac{4}{3} \frac{1 + (1 - z)^2}{z}$$

$$P_{gg}^{\text{LO}}(z) = 3\left(\frac{z}{1-z} + \frac{1-z}{z} + z\left(1-z\right)\right)$$



UH 22/26

PCD

P. Connor

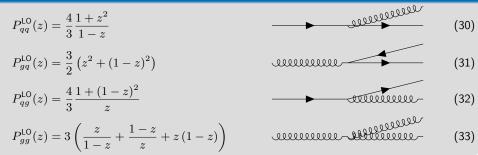
Introduction

Basics

Application Introduction PDF evolution Cross section

Summary

Splitting functions



Exercise #6

Calculate Δ_s to describe the PDF evolution without branching from a starting scale of $t_0 = m_p^2 \approx 1 \text{ GeV}^2$ to a scale of $10, 100, 500 \text{ GeV}^2$.

- For the integral in Δ_S , use 0.01 < z < 0.99.
- Consider the running of the strong coupling α_S .
- Try first P_{qq} , then P_{gg} .

UH 22/26

PCD

P Connor

Application

PDF evolution Cross section

Summary Back-up

PDF evolution Cross section

Application

PCD P. Connor

Summary

Back-up

Exercise #7

Evolve a PDF $f(x,t_0) = 3\frac{(1-x)^5}{x}$ from a starting scale of $t_0 = m_p^2 \approx 1 \text{ GeV}^2$ to a hard scale of $t = 100 \text{ GeV}^2$ (alternate evolution and branching until the scale is reached).

• Consider $\alpha_S = 0.1$ for simplification.

• To simplify the calculation, you may use $P_{gg}(z) \approx 6\left(rac{1}{z} + rac{1}{1-z}
ight)$ for the splitting, and only $P_{aa}(z) \approx 6\frac{1}{1-z}$ for Δ_s .

In addition, the partons start with an intrinsic $k_{\rm T} \sim \mathcal{N}(0, 0.7^2)$. Plot xf(x) and $k_{\rm T}$ at the starting and hard scales.

UH Ĥ 23/26

Application Cross section calculation

Exercise #8

Calculate the hadronic cross section of Higgs production via gluon fusion at the lowest order, with the same starting distributions for x and $k_{\rm T}$ as previously, but neglecting the evolution for the moment.

- Assume $\sqrt{s} = 7$ TeV.
- **Require** $120 < m_h < 130$ GeV.
- The partonic cross section is given by $\hat{\sigma} = \alpha_S^2 \frac{\sqrt{2}}{\pi} \frac{G_F}{576}$ with $G_F = 1.166 \cdot 10^{-5} \text{ GeV}^{-1}$.
- The Higgs production follows a Breit-Wigner distribution:

$$P(m) = \frac{1}{2\pi} \frac{\Gamma_h}{(m - m_h)^2 + \Gamma_h^2/4}$$

(34)

Plot the kinematics of the partons and of the Higgs $(p_{\rm T},\eta,m)$.

PCD

P. Connor

Introduction

Basics

Application Introduction PDF evolution Cross section calculation

Summary

Back-up

UH 24/26

Application Cross section calculation

Exercise #9

Calculate the hadronic cross section of Higgs production via gluon fusion at the lowest order, with the same starting distributions for x and $k_{\rm T}$ as previously, considering in addition the evolution from a starting scale at the proton mass to a hard scale at the Higgs mass.

• Consider only P_{gg} in the evolution.

■ Make the same assumptions as in exercise #8.

Plot the kinematics of the partons at the starting and hard scales, as well as the kinematics of the Higgs $(p_{\rm T},\eta,m).$

UH 25/26

PCD

P Connor

Application Introduction PDF evolution

Cross section calculation

Summary

Summary

We have

- introduced MC integration;
- applied the basic techniques in purely pedagogical examples;
- then in a more realistic (though simplified) concrete example, based on QCD evolution.

Thank you for your attention!

UH 26/26

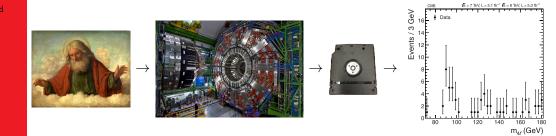
PCD

P Connor

Basics Application Summary

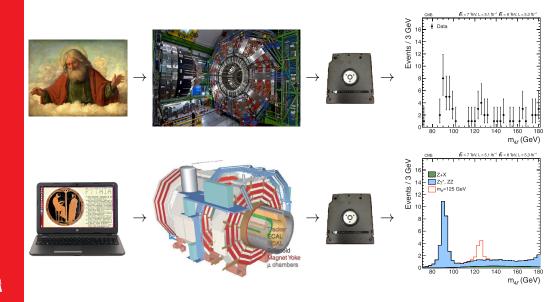
PCD P. Connor

Acronyms Visiting card



UH 27/26 PCD P. Connor

Acronyms Visiting card



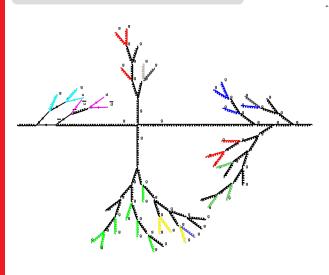
UH # 27/26

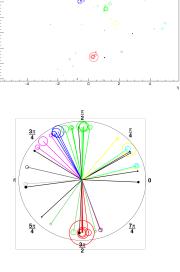
P. Connor

Acronyms Visiting card

Description

Visualisation of parton shower generated by PYTHIA 8 + partons merged by anti- k_T jet algorithm





UH 28/26 PCD

P. Connor

Acronyms Visiting card

Acronyms I

- CLT Central limit theorem. 21-23
- DGLAP after the five physicists DOKSHITZER, GRIBOV, LIPATOV, ALTARELLI and PARISI. 34–36
 - i.i.d. independent and identically distributed. 21
 - LLN Law of Large Numbers. 13, 14, 24, 25

- MC Monte Carlo. 4, 5, 19, 20, 32, 33, 45
- ME Matrix Element. 32
- p.d.f. probability density function. 8, 9, 24-27
- PDF Parton Distribution Function. 32-36, 39-41
- PS Parton Shower. 32
- QCD Quantum Chromodynamics. 4, 5, 45

UH 29/26

P. Connor

Acronyms Visiting card

References I

UH # 30/26 PCD P. Connor

Acronyms Visiting card

Patrick L.S. CONNOR

patrick.connor@desy.de Universität Hamburg https://www.desy.de/~connorpa

MIN-Fakultät Institut für Experimentalphysik Tel.: +49 40 8998-82165 Geb.: DESY Campus 68/121

Center for Data and Computing in natural Sciences *Tel.*: +49 42838-6109 *Geb.*: Notkestraße 9



UH 21/26