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Introduction

Quotation
« Monte Carlo refers to any type of techniques
that makes use of random numbers,
probabilities and statistics to solve a problem
numerically. »

Hannes JUNG
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Introduction
Motivation

MC techniques are widely used in physics:
I deal with high-dimensional problems;
I often easy to interpret at event level.

Today we will introduce them
I first with pedagogical examples,
I then in the context of Quantum Chromodynamics (QCD).

We will alternate slides and hands-on sessions.
Main source: QCD and MC lectures, by Hannes JUNG

Goal
Calculate the following integral:

I =

∫
Ω
f(u) du (1)

for any (more or less smooth) function f .

https://www.desy.de/~jung/qcd-and-monte-carlo-lectures.html
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Introduction

Exercises
Either in plain C++ or in Python with Jupyter notebooks
Just follow the instructions on the GitHub repository.

Advice: work in pairs
Formulate your choices loudly.
Review one another.
Exchange ideas.

Red block
Question!

Grey block
Hands on!

https://github.com/connorpa/mcSchool
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Basics
Definitions

Probability density function (p.d.f.)
The random variable X has p.d.f. g (non-negative, integrable, and normalised to unity) if:

P [a ≤ X ≤ b] =

∫ b

a
g(x) dx (2)

Expectation value and variance
Given f a function of a random variable X following a p.d.f. g:

expectation value E [f ] =

∫ +∞

−∞
f(x)g(x) dx (3)

variance V [f ] = E
[
(f − E [f ])2

]
(4)
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Basics
Law of Large Numbers

General form
Given realisations xi of the random variable X, for N → ∞:

µ ≡ 1

N

N∑
i=1

f(xi) −→ E [f ] (5)

Simple form
If xi ≡ ui ∼ U [a, b], for N → ∞:

1

N

N∑
i=1

f(ui) −→
1

b− a

∫ b

a
f(u) du (6)
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Basics
Law of Large Numbers
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Basics
MC integration

Apply simple form of LLN

I ≈ IMC =
b− a

N

N∑
i=1

f(ui) (7)

σ2
MC = V [IMC] =

(b− a)2

N
V [f ] (8)

=
(b− a)2

N2

N∑
i=1

(f(ui))
2 − 1

N
I2MC (9)

Question
How to generate random numbers?
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Basics
Random number generator

Pseudo random generator for a uniform distribution
Linear congruential generator (e.g. std::rand()) to generate integer
numbers in [0,m[.

Ii+1 ≡ aIi + c (mod m) (10)

I0 seed
a multiplier

c increment
m modulus

RANLUX, which may be seen as a linear congruential generator with a smart
choice of a, c, m, implemented in TRandom1.
The Mersenne Twister generator, as implemented in TRandom3 or
std::mt19937_64.
...

Question
What would be the desired properties for a good pseudo random generator?
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Basics
Random number generator

Exercise #1
Check the correlations of numbers generated with the linear congruential
generator and with one of the TRandom classes in ROOT.
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Basics
Integration

Exercise #3
Calculate the following integral with the help of MC generators:∫ 1

0
3x2 dx (11)

and its uncertainty for different values of N .

Result

N = 103 : IMC = 1.02013± 0.0274001 (12)
N = 106 : IMC = 0.99945± 0.0008942 (13)
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Basics
Gaussian generator

Central limit theorem (CLT)
Given N i.i.d. random variables Xi with expected value µ and variance σ2, then
for N → ∞, the average random variable X̄N tends to follow a normal
distribution:

X̄N ≡ 1

N

N∑
i=1

Xi ∼ N (µ, σ2) (14)
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Basics
Gaussian generator

Exercise #2
Construct a Gaussian random number
generator with the help of the CLT and
of one of the uniform pseudo random
number generators.

Reminder
For ui ∼ U [0, 1], µ = N/2 and
σ2 = N/12.
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Basics
Importance sampling

Question
What if f covers different orders of magnitude? or has a divergency? (e.g. 1/x)

Using the general form of LLN
Consider a p.d.f. g such that the xis populate more the region(s) of interest:

I =

∫ b

a
f(u) du =

∫ b

a

f(x)

g(x)
g(x) dx = E

[
f

g

]
(15)

⇒ I ≈ IMC =
1

N

N∑
i=1

f(xi)

g(xi)
(16)

σ2
MC =

1

N2

N∑
i=1

(
f(xi)

g(xi)

)2

− 1

N
I2MC (17)
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Basics
Importance sampling

Generation of non-uniformly distributed random numbers
Given ui ∼ U [0, 1], the sample xi are described by the p.d.f. g if:∫ xi

−∞
g(x) dx = ui

∫ +∞

−∞
g(x) dx (18)

Exercise #5
Calculate the following integral (and its uncertainty) using uniformly
distributed random numbers (i.e. without importance sampling):∫ 1

0.0001

(1− x)5

x
dx (19)

Then, given Eq. 18, show how to draw random numbers with g(x) ∼ 1
x , and

repeat this integral with importance sampling.
Compare with the exact result using the incomplete Beta function.
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Basics
Importance sampling

Result from exercise #5
With linear sampling:

N = 103 : IMC = 4.85467± 1.23751 (20)
N = 106 : IMC = 6.90493± 0.098539 (21)
N = 109 : IMC = 6.92964± 0.00314253 (22)

To draw random numbers:

xi = xmin

(
xmax
xmin

)ui

(23)

Then with importance sampling:

N = 105 : 6.93396± 0.00992476 (24)

Exact value: 6.92747479226
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Basics
Conclusion

MC integration
Utilise elements of probability theory to calculate integrals.

Other methods
Stratified sampling∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx (25)

Subtraction method∫ b

a
f(x) dx =

∫ b

a
g(x) dx+

∫ b

a
(f(x)− g(x)) dx (26)

Hit & Miss (a.k.a. brute force method)
...
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Application
Introduction

Factorisation

hadronic cross section︷ ︸︸ ︷
σpp→jet+X =

∑
ij∈gqq̄

PDFs︷ ︸︸ ︷
fi(xi, µ

2
F )⊗ fj(xj , µ

2
F )

⊗ σ̂ij→jet+X

(
xi, xj ,

Q2

µ2
F

,
Q2

µ2
R

, αS(µ
2
R)

)
︸ ︷︷ ︸

partonic cross section

Phenomenology of MC event generators

interaction = Parton Distribution Function (PDF)
⊗Matrix Element (ME)
⊗ Parton Shower (PS)
⊗ underlying event (UL)
⊗ hadronisation
⊗ photon radiation
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Application
Introduction

Physics case
First, we will try to better understand the PDFs and their evolution:
I We will assume a simplistic PDF f(x, t0 = mp) = 3 (1−x)5

x .
I We will use MC integration to calculate this PDF at harder scales t.

Then, we will consider gg → hX and investigate the kinematics of h:
I First we will neglect the PDF evolution and consider partons directly taken

from our simplistic PDF.
I Then we will combine the PDF evolution for each of the incoming partons

and see the impact on the kinematics.
NB: We calculate everything at the lowest order in perturbation theory.
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Application
PDF evolution

Nature of PDFs
Complex objects describing the non-perturbative
content of the hadron.
Also contain a perturbative part, whose (collinear)
evolution is described by DGLAP equations.
Parameterised with a non-physical variable, the scale.
More-or-less universal, to be constrained with real
data.

DGLAP equations
dfa(x, µ2

F )

d lnµ2
F

=
∑

b∈{q,g}

∫ 1

x

dz
z

αS

(
µ2
F

)
2π

fb

(x
z
, µ2

F

)
Pba(z) (27)

fa PDF for
parton a ∈ {q, g}

x momentum fraction

µ2
F factorisation scale

αS strong coupling (running)
Pba splitting function
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Application
PDF evolution

Iterative expression
From scale t0 to scale t:

f(x, t) = f(x, t0)∆s(x, t0, t)︸ ︷︷ ︸
evolution without radiation

+

∫
dz
z

∫
dt′

t′
∆s(x, t

′, t)P (z)f
(x
z
, t′

)
︸ ︷︷ ︸

parton splitting

(28)

with the Sudakov form factor (probability of non-branching):

∆s(x, t0, t) = exp
(
−
∫ zM

x
dz

∫ t

t0

dt′′

t′′
αS(t

′′)

2π
P (z)

)
(29)

3−10 2−10 1−10
x

2−10

1−10

1

10

210)µ
xf

(x
,

gluon, NNPDF31_nnlo_as_0118

 = 1 GeVµ
 = 10 GeVµ
 = 100 GeVµ

T
M

D
pl

ot
te

r 
2.

2.
4

gluon, NNPDF31_nnlo_as_0118

Properties
Factorisation property is only proven rigorously for a few
processes but holds for many others.
Usually constrained with real data, regularly updated with
newer data appearing on the market.
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PDF evolution

Splitting functions

P LO
qq (z) =

4

3

1 + z2

1− z
(30)

P LO
gq (z) =

3

2

(
z2 + (1− z)2

)
(31)

P LO
qg (z) =

4

3

1 + (1− z)2

z
(32)

P LO
gg (z) = 3

(
z

1− z
+

1− z

z
+ z (1− z)

)
(33)

Exercise #6
Calculate ∆s to describe the PDF evolution without branching from a starting
scale of t0 = m2

p ≈ 1 GeV2 to a scale of 10, 100, 500 GeV2.
For the integral in ∆S , use 0.01 < z < 0.99.
Consider the running of the strong coupling αS .
Try first Pqq, then Pgg.
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scale of t0 = m2

p ≈ 1 GeV2 to a scale of 10, 100, 500 GeV2.
For the integral in ∆S , use 0.01 < z < 0.99.
Consider the running of the strong coupling αS .
Try first Pqq, then Pgg.
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Application
PDF evolution

Exercise #7

Evolve a PDF f(x, t0) = 3 (1−x)5

x from a starting scale of t0 = m2
p ≈ 1 GeV2 to

a hard scale of t = 100 GeV2 (alternate evolution and branching until the scale
is reached).

Consider αS = 0.1 for simplification.
To simplify the calculation, you may use Pgg(z) ≈ 6

(
1
z + 1

1−z

)
for the

splitting, and only Pgg(z) ≈ 6 1
1−z for ∆s.

In addition, the partons start with an intrinsic kT ∼ N (0, 0.72).
Plot xf(x) and kT at the starting and hard scales.
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Application
Cross section calculation

Exercise #8
Calculate the hadronic cross section of Higgs production via gluon fusion at the
lowest order, with the same starting distributions for x and kT as previously, but
neglecting the evolution for the moment.

Assume
√
s = 7 TeV.

Require 120 < mh < 130 GeV.
The partonic cross section is given by σ̂ = α2

S

√
2

π
GF
576 with

GF = 1.166 · 10−5 GeV−1.
The Higgs production follows a Breit-Wigner distribution:

P (m) =
1

2π

Γh

(m−mh)2 + Γ2
h/4

(34)

Plot the kinematics of the partons and of the Higgs (pT, η,m).
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Application
Cross section calculation

Exercise #9
Calculate the hadronic cross section of Higgs production via gluon fusion at the
lowest order, with the same starting distributions for x and kT as previously,
considering in addition the evolution from a starting scale at the proton mass to
a hard scale at the Higgs mass.

Consider only Pgg in the evolution.
Make the same assumptions as in exercise #8.

Plot the kinematics of the partons at the starting and hard scales, as well as the
kinematics of the Higgs (pT, η,m).
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Summary

We have
introduced MC integration;
applied the basic techniques in purely pedagogical examples;
then in a more realistic (though simplified) concrete example, based on
QCD evolution.

Thank you for your attention!



Back-up



PCD
P. Connor

Acronyms

Visiting card

27/26

→ → →

→ → →



PCD
P. Connor

Acronyms

Visiting card

27/26

→ → →

→ → →



PCD
P. Connor

Acronyms

Visiting card

28/26

Description
Visualisation of parton shower
generated by PYTHIA 8 + partons
merged by anti-kT jet algorithm
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Acronyms I

CLT Central limit theorem. 21–23

DGLAP after the five physicists DOKSHITZER, GRIBOV,
LIPATOV, ALTARELLI and PARISI. 34–36

i.i.d. independent and identically distributed. 21

LLN Law of Large Numbers. 13, 14, 24, 25

MC Monte Carlo. 4, 5, 19, 20, 32, 33, 45

ME Matrix Element. 32

p.d.f. probability density function. 8, 9, 24–27

PDF Parton Distribution Function. 32–36, 39–41

PS Parton Shower. 32

QCD Quantum Chromodynamics. 4, 5, 45
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