Resistive Wall Impedance in FCC Collider

Comparison of Simulation

Ali Rajabi

HELMHOLTZ

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754

Contents

- **01 Resistive Wall Impedance**
- **02** Introduction to the simulation Codes
- **03 Introduction to VACI Suite**
- 04 Resistive Wall Impedance of FCC booster and main Rings

Resistive Wall Impedance

Electromagnetic field carried by an ultra-relativistic point charge

A simplified concept of resistive wall wake field

Chao, Alexander Wu. "Physics of collective beam instabilities in high energy accelerators." Wiley series in beam physics and accelerator technology (1993)

NEG coating

Why NEG is important

- To achieve ultra high vacuum (UHV) in accelerators people usually use Non-Evaporable Getter (NEG) coating on the inner side of vacuum chambers
- Many accelerators such as CERN LHC, ESRF, etc. utilize this method and they successfully reached to UHV.
- One of the NEG coating that I know is TiZrV ternary alloy (such as 30% Titanium, 30% Zirconium and 40% Vanadium).
- A typical conductivity of such chamber materials is around $\sigma = 1.098e6$ which is around ~50 times less than copper conductivity of $\sigma = 5.87e7$.
- NEG coating may increase the resistive-wall impedance of the machine significantly.

Electric Field patterns

Due to Monopole, Dipole and Quadrupole electron distribution

A mathematical approach to RW impedance

Solving maxwell's equations

Simulation Codes

Existing Simulation Codes

Maxwell Solvers vs Analytical Solvers

Maxwell's Equations solvers:

- ImpedanceWake2D by Mounet * (free)
- BeamImpedance2D by Niedermayer ** (free)
- Yokoya's Code *** (free)
- ECHO -1 / 2 / 3D code by Zagorodnov **** (free)
- CST Microwave Studio (commercially available)
- GDFIDL (commercially available)
- VACI Suite

Analytical formulas solvers:

- ReWall developed by Mounet et al CERN
- Numerical impedance calculations by Doliwa et al and Niedermayer
- Mathematica code developed in DESY
- CETA by Chao Li @ DESY for RW Impedance
- And ...

* https://twiki.cern.ch/twiki/bin/view/ABPComputing/ImpedanceWake2D

** Niedermayer, Uwe, Oliver Boine-Frankenheim, and Herbert De Gersem. "Space charge and resistive wall impedance computation in the frequency domain using the finite element method." *Physical Review Special Topics-Accelerators and Beams* 18.3 (2015): 032001.

*** Yokoya, Kaoru. "Resistive wall impedance of beam pipes of general cross section." Part. Accel. 41.KEK-Preprint-92-196 (1993): 221-248.

**** https://echo4d.de/

Introduction to VACI Suite

There is no passion to be found playing small - in settling for a life that is less than the one you are capable of living

Nelson Mandela

VACI suite a versatile tool to calculate RW impedance

Introduction

VACI (VAcuum Chamber Impedance) suite

By coincidence it also means: finding a balance that can restore the fun and enjoyment in your life.

How does VACI work?

Equations to solve

Maxwell's equations:

$$\operatorname{div} \vec{D} = \rho_m,$$

$$\operatorname{curl} \vec{H} - j\omega \vec{D} = \vec{J_m},$$

$$\operatorname{curl} \vec{E} + j\omega \vec{B} = 0,$$

$$\operatorname{div} \vec{B} = 0,$$

Material relations:

$$\vec{D} = \varepsilon_c \vec{E},
\vec{B} = \mu \vec{H},$$

$$\varepsilon_c = \varepsilon_0 \varepsilon_1 = \varepsilon_0 \left(\varepsilon'_r - j \varepsilon''_r \right) = \varepsilon_0 \varepsilon_b \left[1 - j \tan \vartheta_E \right] + \frac{\sigma}{j \omega},$$

$$\mu = \mu_0 \mu_1 = \mu_0 \mu_r \left[1 - j \tan \vartheta_M \right].$$

Boundary Conditions:

Approaches to solve Maxwell's equations

$$\mathbf{1} \begin{cases} \nabla^2 \vec{E} + \omega^2 \varepsilon_c \mu \vec{E} = \frac{1}{\varepsilon_c} \operatorname{grad} \rho_m + j \omega \mu \rho_m v \vec{e_s}. \\ \nabla^2 \vec{H} + \omega^2 \varepsilon_c \mu \vec{H} = v \frac{\partial \rho_m}{\partial r} \vec{e_\theta} - \frac{v}{r} \frac{\partial \rho_m}{\partial \theta} \vec{e_r}. \end{cases}$$

$$\mathbf{2} \begin{cases} \left[\Delta - \mu \varepsilon \frac{\partial^2}{\partial t^2} \right] \mathbf{A} = -\mu \mathbf{J} + \nabla \left[\nabla \cdot \mathbf{A} + \mu \varepsilon \frac{\partial \Phi}{\partial t} \right] \\ \left[\Delta - \mu \varepsilon \frac{\partial^2}{\partial t^2} \right] \Phi = -\frac{\rho}{\varepsilon} - \frac{\partial}{\partial t} \left[\nabla \cdot \mathbf{A} + \mu \varepsilon \frac{\partial \Phi}{\partial t} \right] \end{cases} \quad \nabla \cdot \mathbf{A} + \mu \varepsilon \frac{\partial \Phi}{\partial t} = 0 \end{cases}$$

$$3 \begin{cases} \nabla \times \underline{\nu} \nabla \times \underline{\vec{E}} - \omega^2 \underline{\varepsilon} \, \underline{\vec{E}} = -i\omega \underline{\vec{J}}_s & \underline{\vec{E}} = \underline{\vec{E}}_{curl} + \underline{\vec{E}}_{div} \\ \nabla \cdot \underline{\varepsilon} \underline{\vec{E}}_{curl} = 0 \text{ and } \nabla \times \underline{\vec{E}}_{div} = 0 \end{cases}$$

Electron bunch distribution

Considering Higher Order Modes

For every geometry in VACI we can consider 3 modes for RW calculation:

- Monopole
- Dipole (Horizontal and vertical)
- Quadrupole

Possibilities and limitations:

- The results are sensitive to mesh number so one should find a balance between calculation time and accuracy.
- For every distribution the impedance and wakefield can be calculated
- Bunch shape and location can be changed to also calculate weird configuration.
- The possibility of two bunches near each other is under consideration to be added to the code

VACI Results

VACI results for Space-Charge

Round pipe

Gluckstern, Robert L. "Analytic methods for calculating coupling impedances." (2000).

VACI results for Round pipe

Impedance calculation

Energy: 15 GeV, Round Pipe: r = 35 mm Length = 1 m

---- VACI suite

- Aanalytical

1012

---- VACI suite

--- Analytical

1012

VACI results for Oval pipe

Impedance calculation

Energy: 15 GeV, Ellipese pipe: r1 =35 mm- r2=20 mm, Round Pipe: r = 20 mm

Yokoya's Factors:

R [mm]	Long	X dip	Y dip	X quad	Y quad
20	0.953	0.458	0.839	-0.381	0.381

DESY. | Resistive Wall Impedance in FCC-ee| Ali Rajabi

VACI also can give results in time domain

Longitudinal Wake field (E_z)

iFFT method:

uneven sampling and a piecewise polynomial interpolation (cubic Hermite interpolation) {Based on <u>Nicolas Mounet</u> Ph.D. thesis + some small upgrades}

Mounet, Nicolas. The LHC transverse coupled-bunch instability. No. THESIS. EPFL, 2012.

VACI also can give results in time domain

Longitudinal Wake field (E_z)

Energy: 15 GeV, Ellipese pipe: r1 =35 mm- r2=20 mm, Round Pipe: r = 20 mm

Yokoya's Factors:

R [mm]	Long	X dip	Y dip	X quad	Y quad
20	1	0.485	0.848	-0.362	0.362

VACI Wake field calculation due to different bunch distributions

Only for E_z in Elliptical vacuum chamber, compared to Yokoya's result for Monopole E_z

Ríng with dípole dís. Hor.

Panofskey-Wenzel theorem

VACI results for Multi-Layer vacuum chamber

Impedance calculation of Round pipe With NEG coating

NEG properties: $\sigma = 1.098e6$, Thichness: 10 μm Material: TiZrV alloy

Resistive Wall Impedance of FCC main Ring

FCC booster and main rings Geometries

Impedance sources

Impedance Sources

- I. Beam pipes and Resistive Wall Impedance
- II. RF Cavities (No. 56 in a 4-cell array)
- III. RF Cavity Tapers (No. 14 double tapers)
- IV. Synchrotron Radiation (SR) absorbers
- V. Collimators (No. 20)
- VI. Beam Position Monitors (No. 4000)
- VII. Comb-Type RF shielding for bellows (No. 8000)

VACI results for FCC main ring

Impedance calculation (loglog plots)

 10^{-4}

10-2

10⁰

10²

104

106

f[Hz]

108

1010

1012

VACI results for FCC main ring

Impedance calculation (normal plots, 300 sample points)

VACI results for FCC main ring

Wakefield calculation (normal plots, 300 sample points)

- Copper pipe without NEG coating
- Frequency Range $[10^{-2}, 10^{14}]$
- Energy: 15 GeV,
- Round Pipe for comparison: R = 35 mm
- iFFT method: uneven sampling and a piecewise polynomial interpolation

Summary and Outlooks

What we can expect...

What we have achieved:

- 2D RW impedance solver for vacuum chamber with general cross sections based on FEM
- RW impedance calculator with NEG coating
- Wake potential calculator
- Wake field calculator
- HOM impedance calculator
- Parallel on CPU, compiled for cluster.
- 3D geometries and CAD reader

Future plans

- Adding full ring impedance calculator
- Calculating impedance for two beam (injecting beam and existing beam)
- Adding 3D solver
- Maybe adding some simple 2D Geometrical impedance calculator

Thank you for your Attention

Please feel free to share any Ideas, discussion, suggestions?

Contact

Deutsches Elektronen-	Ali Rajabi
Synchrotron DESY	MPY – PETRA III
	Ali.Rajabi@desy.de

www.desy.de