Flavorful hybrid anomaly-gravity mediation

Christian Gross

Technische Universität Dortmund

LHC-D SUSY/BSM workshop @ DESY Hamburg, 5.5.11

(based on arXiv:1101.5352, with Gudrun Hiller)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Motivation

- weak-scale SUSY:
 - © stabilize weak scale
 - ③ dark matter candidate

☺...

- flavor- and CP violation
- 쉵 μ -problem
- ∮ gravitino (Ψ_{3/2}) problem (if baryogenesis via leptogenesis)

\$...

- how severe above problems are depends on SUSY model
- e.g. anomaly mediation:
 - $\Psi_{3/2}$ so heavy that it decays before BBN \odot
 - flavor blind ©
 - unfortunately: $m_{slepton}^2 < 0$ in pure AMSB $\frac{4}{2}$

anomaly mediation: [Randall, Sundrum; '98] [Giudice et al.; '98]

- AMSB is SUSY due to quantum anomaly in scaling symmetry
- soft masses (also gaugino masses, A-terms ...):

$$m^{2}|_{amsb} = \frac{1}{2} |m_{3/2}|^{2} \mu \frac{d}{d\mu} \gamma \sim \underbrace{\frac{|m_{3/2}|^{2}}{(16\pi^{2})^{2}}}_{\sim 10^{-4} |m_{3/2}|^{2}} (\mp g^{4} - g^{2}Y^{2} + Y^{4})$$

... compare to gravity mediation (PMSB):

$$m^2|_{pmsb} \sim rac{|F_S|^2}{M_*^2} \simeq |m_{3/2}|^2 rac{M_{pl}^2}{M_*^2} \gg m^2|_{amsb}$$

 $(F_S \simeq m_{3/2}M_{pl})$ M_* : scale of new physics S: hidden sector superfield

⇒AMSB soft terms only relevant if PMSB is suppressed (i.e. if SUSY sector is 'sequestered' [Randall, Sundrum; '98])

preview: main ideas of this talk

- don't suppress PMSB completely, but only so much that $m_{soft}^2|_{pmsb} \sim m_{soft}^2|_{amsb}$
- then, $m_{soft}^2|_{pmsb}$ can cure tachyonic slepton problem
- this spoils flavor-blindness of AMSB, but keep in mind:
 - need a flavor model anyways to explain SM masses and mixings
 - the same flavor model can at the same time explain absence of excessive FV and CPV [Nir, Seiberg; '93]
- characteristic phenomenology!

Sequestering in 5d brane worlds [Randall, Sundrum; '98]

- minimal 5d SUGRA: no SUSY at tree level
- effects of other (heavy) bulk modes:

$$\mathcal{L}_4 \supset e^{-M_*L} rac{X_{ij}}{M_*^2} \left. S ar{S} Q_i ar{Q}_j
ight|_{ heta^4}$$

→ scalar masses:

$$m_{ij}^2|_{
m pmsb} \sim rac{e^{-M_*L}}{M_*^2}|F_S|^2 X_{ij} \simeq rac{|F_{\Phi}|^2}{(16\pi^2)^2}\,r\,X_{ij}$$

with PMSB to AMSB ratio

 $r \equiv (16\pi^2 M_{pl}/M_*)^2 e^{-M_*L}$

usually: $r \ll 1$; here: $r \sim 1$

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆 の Q () 4/12

Sparticle masses in hybrid AMSB-PMSB

- focus on sleptons here
- (*l

 L
 , l
 ^{*}

 mass matrix is*

$$\mathcal{M}_{\tilde{\ell}}^2 \simeq \frac{|m_{3/2}|^2}{(16\pi^2)^2} \left(\begin{array}{cc} -g_L \mathbf{1} + rX^L & \mathbf{0} \\ \mathbf{0} & -g_R \mathbf{1} + rX^R \end{array} \right)$$

where $g_L:=rac{99}{50}g_1^4+rac{3}{2}g_2^4$ and $g_R:=rac{198}{25}g_1^4$

- note: elements of $X^{L/R}$ specified by FN model (see next slides...) \rightarrow O(1) uncertainty
 - \rightarrow can neglect:
 - F- and D-terms
 - L R mixing
 - RG effects, in particular those from RH neutrinos

Alignment

- need to explain both SM and MSSM flavor puzzles
- here: employ a Froggatt-Nielsen model
- FCNCs constrain mass insertion parameters $\delta^M_{ij} \simeq \frac{m^2_{\tilde{\ell}_j^M} m^2_{\tilde{\ell}_j^M}}{m^2} K^M_{ij}$
 - $m_{\tilde{\ell}}^2$: average slepton mass K_{ij}^M : coupling of \tilde{B}^0/\tilde{W}^0 to *M*-chiral leptons ℓ_i and sleptons $\tilde{\ell}_j$
 - In FN models, (m²_{ℓ_j} − m²_{ℓ_j})/m²_ℓ is O(1)
 ⇒ offdiag. entries of K^m_{ij} must be supressed! ('alignment')
 - useful relation: $K_{ij}^{M} \sim \max\left\{|X_{ij}^{M}|, |V_{ij}^{M}|\right\}_{\mathcal{K}}$

 $(V^{R\dagger}Y^TV^L \text{ is diagonal})$

How much alignment is needed?

• strongest constraint on $|\delta|$'s comes from $\ell_i \to \ell_j \gamma$:

$$egin{array}{rcl} BR(\mu
ightarrow e \gamma) &\leq 1.2 imes 10^{-11} \ BR(au
ightarrow e \gamma) &\leq 3.3 imes 10^{-8} \ BR(au
ightarrow \mu \gamma) &\leq 4.4 imes 10^{-8} \end{array}$$

theory: [Masina, Savoy; '03]

$$\frac{BR(\ell_i \to \ell_j \gamma)}{BR(\ell_i \to \ell_j \nu_i \bar{\nu}_j)} = \frac{48\pi^3 \alpha}{G_F^2} (|A_L^{ij}|^2 + |A_R^{ij}|^2) \sim 10^{-4} (\tan\beta \frac{m_W^2}{\tilde{m}^2})^2 |\delta_{ij}^L|^2$$

\rightarrow roughly pood:	<i>i-j</i> mixing	1-2	1-3	2-3
->Toughiy need.	$\delta_{ij}^L \lesssim$	$6 imes 10^{-4}$	0.08	0.10

(bounds on $|\delta_{ij}^{R}|$'s weaker due to possible cancellation in A_{R}^{ij})

flavor charge assignment:

	L_1	L_2	L ₃	E_1	E_2	E ₃	
$U(1)_p$	3	1	0	3	2	2	[RH neutrinos + Higgs: neutral]
$U(1)_q$	0	2	3	1	-1	-3	
	Y	$_{ m e}\sim\lambda$	2	λ^5 λ^5 λ^5	$\begin{array}{ccc} 0 & 0 \\ \lambda^2 & 0 \\ \lambda^2 & 1 \end{array}$		[assume $\lambda_{p} \sim \lambda_{q}$ with $\lambda_{p} \equiv \lambda \sim 0.2$]
	X	^L ~ ($\begin{pmatrix} 1 \\ \lambda^4 \\ \lambda^6 \end{pmatrix}$	λ^4 1 λ^2	λ^6 λ^2 1), <i>x</i>	$^{R}\sim\left(egin{array}{ccc} 1&\lambda^{3}&\lambda^{5}\ \lambda^{3}&1&\lambda^{2}\ \lambda^{5}&\lambda^{2}&1 \end{array} ight)$
	(m_{ν})	$_{ij} \sim \frac{\langle}{2}$	$\frac{H_u^0}{\hat{M}_R}$	λ^6	∀i,j	←tł	rough seesaw

comments:

- m_{ν} anarchical $\rightarrow \sin \theta_{13}$ accidentally small
- RH neutrino mass scale \hat{M}_R should be $\sim 10^{10}$ GeV for $m_{\nu} \sim 0.1$ eV \rightarrow OK with leptogenesis

... and one with stronger alignment

- above example has minimal amount of alignment (in 1-2 mixing): $\mu \rightarrow e\gamma$ could be around the corner
- is stronger alignment possible?
- there is in fact a lower bound on the δ^L's, nevertheless it is possible to have precise enough alignment that no signals would be seen even in planned future rare decay measurements:

$$Y_{\theta} \sim \lambda^{2} \begin{pmatrix} \lambda^{5} & 0 & 0 \\ 0 & \lambda^{2} & 0 \\ \lambda^{5} & 0 & 1 \end{pmatrix}$$
$$X^{L} \sim \begin{pmatrix} 1 & \lambda^{10} & \lambda^{6} \\ \lambda^{10} & 1 & \lambda^{4} \\ \lambda^{6} & \lambda^{4} & 1 \end{pmatrix}, X^{R} \sim \begin{pmatrix} 1 & \lambda^{11} & \lambda^{5} \\ \lambda^{11} & 1 & \lambda^{6} \\ \lambda^{5} & \lambda^{6} & 1 \end{pmatrix}$$
$$(m_{\nu})_{ij} \sim \frac{\langle H_{U}^{0} \rangle^{2}}{\hat{M}_{R}} \lambda^{10} \quad \forall i, j$$

Sample spectrum ...

 $aneta=5,\,m_{3/2}=60$ TeV, $\mu>0$

features:

- 1) gaugino spectrum as in pure AMSB (at least assuming that SUSY field S is not gauge singlet)
- 2) O(1) slepton mass splitting
- O(10 %) squark mass splitting (assuming squark flavor is also due to FN)

2nd column: mAMSB sfermion spectrum with universal scalar mass uplift $m_0=350~{
m GeV}$

... and its signatures:

- 1) soft pion in $ilde{C}_1^\pm o ilde{N}_1 \pi^\pm$ decays <code>cf. [Gherghetta, Giudice, Wells; '99]</code>
- 2) same-flavor dilepton edge measurements with missing energy in $\tilde{N}_2 \rightarrow \ell_i \tilde{\ell}_i^*, \bar{\ell}_i \tilde{\ell}_i \rightarrow \bar{\ell}_i \ell_i \tilde{N}_1$ cascades:

$$m_{ ilde{\ell}_i,\ell_i,max}^2 = rac{(m_{ ilde{N}_2}^2 - m_{ ilde{\ell}_i}^2)(m_{ ilde{\ell}_i}^2 - m_{ ilde{N}_1}^2)}{m_{ ilde{\ell}}^2}$$

 \Rightarrow expect multi edge structure from $\tilde{\ell}_i^R$ and $\tilde{\ell}_i^L$ exchanges, both for dielectron and dimuon final states (\tilde{e} - $\tilde{\mu}$ mass splitting from comparing $m_{\tilde{e}e}^2$ and $m_{\tilde{\mu}\mu}^2$ edges _{cf. the mSUGRA} study [Allanach, Conlon, Lester; '08])

 D-D mixing close to exp. limit cf. [Feng et al.; '08] reason: SU(2) symmetry implies

$$egin{aligned} &|\delta^u_{L12}-\delta^d_{L12}|\gtrsim \sin heta_c\ (m^2_{ ilde{q}^L_2}-m^2_{ ilde{q}^L_1})/m^2_{ ilde{q}}\ &\lesssim 10^{-3} ext{ from } extsf{K} \end{aligned}$$

(ロ) (四) (E) (E) (E) (E)

Conclusions

- ★ a simple way to avoid the tachyonic slepton problem of AMSB is to suppress gravity mediation not completely, but only so much that it still gives a comparable contribution
- ★ the heavy gravitino is beneficial for cosmology
- ★ the SM and SUSY flavor puzzles are solved by a FN symmetry
- ★ characteristic signatures, due to
 - AMSB pattern of gaugino masses
 - O(1) slepton mass splitting
 - O(10%) squark mass squared splittings

outlook:

- model-building: µ-term? Stabilization of brane distance
- phenomenology: prospects of measuring large slepton mass splittings at the LHC?