
Proceedings of the CTD 2022
PROC-CTD2022-32
June 27, 2022

Track reconstruction at the LUXE experiment using quantum algorithms1

Arianna Crippa1,2, Lena Funcke3, Tobias Hartung4,5, Beate Heinemann6,7,2

Karl Jansen1, Annabel Kropf6,7, Stefan Kühn4, Federico Meloni6, David3
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ABSTRACT17

LUXE (Laser Und XFEL Experiment) is a proposed experiment at DESY which18

will study Quantum Electrodynamics (QED) in the strong-field regime, where19

QED becomes non-perturbative. The measurement of the rate of20

electron-positron pair creation, an essential ingredient to study this regime, is21

enabled by the use of a silicon tracking detector. Precision tracking of positrons22

traversing the four layers of the tracking detector becomes very challenging at23

high laser intensities due to the high rates, which can be computationally24

expensive for classical computers. In this paper, a preliminary study of the25

potential of quantum computers to reconstruct positron tracks is presented. The26

reconstruction problem is formulated in terms of a Quadratic Unconstrained27

Binary Optimisation (QUBO), and solved using simulated quantum computers28

and hybrid quantum-classical algorithms such as Variational Quantum29

Eigensolver (VQE). Different ansatz circuits and optimisers are studied. The30

results are discussed and compared with classical track reconstruction algorithms31

using Graph Neural Network and Combinatorial Kalman Filter.32
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1 Introduction36

LUXE [1] is a planned experiment at DESY in Hamburg to study the transition far into the strong-field37

regime of QED, where QED becomes non-perturbative. In this experiment, the high-energy electron beam38

from the European XFEL is used together with a high-power laser. Both the interaction of the laser beam39

with the electron beam as well as with a beam of bremsstrahlung photons are studied. Processes of interest40

are Compton scattering and Breit-Wheeler pair creation. In the Compton process in a plane wave background41

of a laser field,42

e− + nγL → e− + γ, (1)

an electron emits a high-energy photon, where n is the number of laser photons γL participating in the43

process. Breit-Wheeler pair creation,44

γ + nγL → e+ + e−, (2)

in the presence of a strong electromagnetic field is the decay of a high energy photon into electron-positron45

pairs. The classical non-linearity parameter,46

ξ =
me

ωL

EL
Ecr

, (3)

with me as the electron mass, ωL as the laser frequency, EL as the instantaneous laser field strength and47

Ecr = m2
ec

3/eh̄ as the critical field strength, known as Schwinger-Limit, is used to demarcate the regime of48

strong-field QED in particle-laser and photon-laser interactions (ξ ≫ 1).49

2 Experimental setup50

Figure 1: LUXE setup in e-laser mode. Recreated from [1].

Figure 1 shows the experimental setup of LUXE for the e-laser mode. The electron beam from the51

European XFEL is guided to the interaction point (IP) and crossed with the high-power laser. In the initial52

phase-0 of LUXE, a laser with 40 TW is used. For phase-1, an upgrade of the laser up to 350 TW is53
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planned. Utilising a dipole magnet, electrons and positrons are deflected to their respective detector systems54

for energy and position measurements. The track reconstruction study which is presented in the following55

focuses on positrons detected by a silicon pixel tracking detector. The tracking detector system consists of56

eight staves partially overlapping and forming four layers with respect to the beam-axis. Each layer covers a57

length of approximately. 50 cm in x-direction. The staves are populated by 9 sensor chips, each containing58

1024 × 512 pixels with a size of 29 × 27 µm2.59

Figure 2: Number of expected positrons per interaction (BX) of the laser with both the electron beam
and the Bremsstrahlung photon source as a function of the classical nonlinearity parameter ξ. Reproduced
from [1].

To study the transition far into the non-perturbative regime of QED, a key concept is to measure the60

number of positrons generated from the Breit-Wheeler process with respect to the parameter ξ. The number61

of expected positrons ranges from less than 10−4 up to 106 in the e-laser setup, displayed in Figure 2. Both62

a low background rate (< 10−3) at low ξ and good linearity up to a high multiplicity are essential for track63

reconstruction. For this challenging task, we explore the potential of using quantum computing algorithms64

for track reconstruction. Previous results of our work can be found in Ref. [2]. An overview of possible65

quantum algorithms suitable for charged particle tracking is given in Ref. [3].66

3 Data sets and selection67

In this study simulated data are used. Signal interactions at the IP are generated with PTARMIGAN [4], a68

custom Monte Carlo event generator. Positrons stemming from PTARMIGAN are propagated through the69

dipole magnet and the positron tracking system using a simplified simulation. In the simplified simulation,70

parameters such as position and resolution of detector layers, as well as scattering processes can be tuned to71

explore the impact on the tracking approach. Within the frame of this study the detector geometry of the72

simplified simulation is reduced to a set of four non-overlapping layers.73

The used simulated data predicts future measurements of phase-0 of LUXE for the e-laser setup for ξ ∈74

{4, 5, 7}, which corresponds to 800 to 60,000 expected positrons. Only the 500 particles per laser beam75
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interaction that are closest to the beamline are considered for the track reconstruction task in order to76

equalize the size of all used data sets. Both the track density and the complexity of the track reconstruction77

task increase with ξ.78

Our starting point for track reconstruction is either doublet or triplets. Doublets are a set of two hits79

from exclusively consecutive layers, while triplets are a set of two doublets with exactly one shared hit. With80

respect to the beam line, an angle-based pre-selection procedure is applied to the doublets based on the81

experiment geometry. Triplets are formed if the angles between two doublets with one shared hit are not82

exceeding the expected maximum multiple scattering in the detector. In this procedure, the combinatorial83

candidates are reduced without lowering the efficiency.84

4 Methodology85

4.1 Classical tracking86

As a benchmark a classical tracking approach with a combinatorial Kalman Filter (CKF) technique is used.87

For this, the A Common Tracking Software (ACTS) toolkit [5] is employed. Triplets are used as seeds to88

find an initial estimate of the track parameters. Scanning for matching hit candidates, the initial estimate89

is updated and the measurement search is performed at the same time. Eventually, after track finding and90

fitting is completed, an ambiguity-solving step is applied to remove tracks with shared hits.91

4.2 Graph neural network92

Another method which is explored in this work is the use of a graph neural network (GNN) [6, 7]. Hits are93

represented as nodes. Edges are connections between nodes, forming doublet-like structures, called segments,94

and are only kept if they satisfy the pre-selection criteria. The GNN consists of alternating EdgeNetwork95

and NodeNetwork and is trained to optimize the edge connections, thus learning which segments should be96

chosen to be a part of track candidates. Furthermore, there is a hybrid quantum-classical version of the97

GNN-based tracking [8], but this is not examined in this work.98

4.3 Quantum algorithm99

When using the quantum algorithm, the tracking task is approached by first encoding triplets as binary100

variables and then deciding which triplets to keep or discard in the subsequent track reconstruction process.101

An objective function is defined, called quadratic unconstrained binary optimization (QUBO), similar to102

Ref. [9]. The goal is to minimise the objective103

O =

N∑
i

∑
j<i

bijTiTj +

N∑
i=1

aiTi, Ti, Tj ∈ {0, 1}, (4)

with Ti and Tj representing triplets on position i and j of a possible solution vector, and ai and bij as104

coefficients.105

The quadratic term describes the relation between triplets. This relation is quantified by the parameter106

bij , which has a negative value if triplets form a track candidate, a positive value if they are in conflict and107

zero if they do not share a hit. The parameter ai rates a triplet based on the angle between the two doublets108

that make up the triplet. In contrast to our previous results, we are focusing entirely on the relation term109

in this work, discarding the linear term completely.110

Solving the QUBO directly on a quantum device is not possible, therefore the objective has to be mapped111

to an Ising hamiltonian. Finding the ground state of the Ising hamiltonian is equivalent to minimizing the112

QUBO and thus finding an optimal solution to the track reconstruction task. The Ising Hamiltonian,113

H = −
N∑

n=1

∑
m<n

bnmσx
nσ

x
m −

N∑
n=1

anσ
x
n, (5)
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is solved using the Variation Quantum Eigensolver (VQE), a hybrid quantum-classical algorithm. For this114

task, the Qiskit [10] toolkit is employed. As a benchmark for VQE, an analytical solution can be obtained by115

using Numpy Eigensolver. In this study noise is excluded for VQE. As optimiser the Nakanishi-Fujii-Todo116

(NFT) [11] algorithm is selected.117

We have improved VQE’s hyperparameters to boost performance compared to our previous results. NFT118

is chosen instead of Constrained Optimization by Linear Approximation (COBYLA). The quantum circuit119

following the TwoLocal ansatz scheme is altered to a linear entanglement from a circular entanglement120

scheme. The circuit depth is increased to three (see previous results in [2]).121

The quantum circuit is shown in Fig. 3.122

Figure 3: Variational quantum circuit layout. The TwoLocal ansatz is used with three repetitions of RY

and CNOT gates for entanglement and an additional final rotation layer. For simplicity, only a four qubit
system is shown.

To solve the QUBO an initial guess of the solution in the form of a string representation of the set123

of triplets, assuming values {0, 1} is made. For solving the QUBO in one step, the number of available124

qubits for the computation has to be the same as the number of triplets participating in the QUBO. Since125

sizes of quantum devices of this magnitude are not available and simulating huge devices is computationally126

infeasible, the problem has to be broken down into smaller parts, called sub-QUBOs, which are solved127

sequentially in each iteration. A sub-QUBO size of 7 is chosen. The order of triplets used in the sub-QUBO128

process is determined by their impact on the Hamiltonian energy if the binary representation of the triplet129

in the QUBO is flipped. A sketch of the QUBO solving process with a focus on the sub-QUBO routine is130

shown in Fig. 4.131

Figure 4: Sketch of the QUBO solving approach with focus on the sub-QUBO routine [2].
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5 Results132

Comparing the performance of the track reconstruction approaches is done on track level. Efficiency and133

fake rate are used as metrics. A track is defined as a set of four hits of consecutive layers which is either134

combining doublets and triplets into quadruplets or is found directly with the classical CKF-based tracking135

method. A matched track stems from exactly one particle.136

Efficiency and fake rate are defined as137

Efficiency =
Nmatched

tracks

Ngenerated
tracks

and Fake rate =
N fake

tracks

N reconstructed
tracks

. (6)

In Fig. 5 efficiency and fake rate for 500 tracks is displayed as a function of the classical non-linearity138

parameter ξ. Conventional CKF-based tracking is used as a benchmark to show what can actually be139

achieved in terms of efficiency and fake rate, and compared to GNN-based tracking and VQE. Eigensolver140

results are added as a benchmark for VQE approach for a sub-QUBO size of seven.141

Figure 5: Track reconstruction efficiency and fake rate as a function of ξ.

CFK-based tracking efficiency decreases with ξ but is still performant at the highest shown track density142

at ξ = 7. GNN-based tracking shows nearly ξ-independent efficiency. VQE and Eigensolver deteriorate143

strongly at high ξ values while being comparable with CKF-based tracking and GNN at ξ = 4. While GNN144

is believed to profit from more training examples, hence possibly increasing its performance further, VQE145

is likely limited by the set of parameters and the size of the sub-QUBOs, therefore both approaches can be146

further optimized. To investigate the impact of the sub-QUBO size on the performance, only the Eigensolver147

is used, because simulating VQE for 16 qubits is computational very costly. In Fig. 6 the impact of the size148

of the sub-QUBO on the efficiency and fake rate is shown for 1000 tracks, that are closest to the beamline.149

Increasing the size of the sub-QUBOs from 7 to 16 results in an imrpovement of the efficiency up to 10% at150

high ξ. This indicates, that the available sub-QUBO size is a limiting factor of the optimization algorithm.151

Using advanced entanglement structures is a way to improve the results of VQE on the sub-QUBO level.152

Four different entanglement structures are compared in Fig. 7. Linear entanglement is shown in Fig. 3.153

Circular entanglement has an additional CNOT entanglement gate from the last to the first qubit. Full154

entanglement refers to each qubit being entangled with every other qubit. An hamiltonian driven approach155

is used, if qubits are only entangled if they are representing triplets, which actually have a shared hit, thus156

an immediate connection. Linear and Hamiltonian driven entanglement show a performance similar to the157

Eigensolver, which is an upper limit for the performance of the sub-QUBO approach. Full entanglement158

performs slightly worse, whereas circular entanglement performs very poor. This significant difference in159

performance is unexpected and will be a subject of further investigations.160
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Figure 6: Track reconstruction efficiency and fake rate for 1000 tracks as a function of ξ for sub-QUBO sizes
7 (Q7) and 16 (Q16).

Figure 7: Efficiency and fake rate as a function of ξ. The Eigensolver result is the upper limit of what can
be achieved by employing VQE and using the sub-QUBO subroutine approach.

6 Conclusions161

Using a hybrid quantum-classical algorithm for track reconstruction in the LUXE experiment is studied,162

as well as a GNN-based tracking approach. As a benchmark conventional CKF-based tracking is used.163

Currently the performance of the quantum approach is poorer than GNN-based and conventional tracking164

but clues for optimization on the quantum part as well as on the classical part are identified and will be165

investigated in the future. Especially the optimization of the sub-QUBO routine and the possible decoupling166

of its dependency on the sub-QUBO size are strong candidates for major improvements.167
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