# **Gluing of sensors**

### Adrián Irles\* on behalf the SiW-ECAL team























# **Silicon Sensors**

### Si Sensor (9x9cm<sup>2</sup> from 6" wafer)



### Wafer specs

| Tab 1 : Summary of the substrate characteristics |      |      |      |
|--------------------------------------------------|------|------|------|
|                                                  | Min. | Тур. | Max. |
| N type silicon                                   | -    | -    | -    |
| Resistivity (kOhms.cm)                           | 4    | 5    | -    |
| Thickness (µm), option T1                        | 310  | 320  | 330  |
| Thickness (µm), option T2                        | 490  | 500  | 510  |
| Width (mm), option S1                            | 89.7 | 89.8 | 89.9 |
| Width (mm), option S2                            | 44.7 | 44.8 | 44.9 |

Definition of specifications for different wafer types: Resisitvity: > 5 k $\Omega$ xcm

N-type silicon Crystal Orientation: <100> or <111>

- In addition we require small leakage current:s under full depletion a few nA/pixel but for cost reasons we tolerate a certain fraction of pixels with higher leakage currents
- Vendors: OnSemi (CZ) and Russian company for physics prototype (~2003) Hamamatsu for technological prototype (since ~2010) Contacts with other vendors (e.g. LFoundry) hibernating mainly for funding reasons



# Silicon Sensors

### ▶ Hammamatsu

- ▶ 500umx90mmx90mm
- > 256 PIN diodes (5.5mx5.5mm)
- No guard rings







Irles A., 2nd June. 2022

# Gluing (LPNHE & Kyushu U.)

- A new system was purchased for:
  - Positioning
  - Wafer and PCB handling
- Gluing process performed with the current machine

2 robots +1 pcb aspiration palate

- robot1 for positioning and gluing deposition
- robot2 for aspiration nof the wafr and deposition on top of the PCB





Irles A., 2nd June. 2022

# Gluing (LPNHE & Kyushu U.)

Glue: EJ2189LV (since 2018?)

 https://ftpolymer.fr/colles-epo-tek/ colles-conductrices-electriquesepo-tek/colle-epoxybicomposante-ej2189/

Specs: 80°C/3 Hours - 23°C/72 Hour

### Procédure de collage

#### Mélange 90%/10% durcisseur

mesure à la balance de précision (qq g) **1-2 mins à la main** centrifugeuse au LLR ▲ poussières

rem: PAS DE DÉGAZAGE

#### Dépôt

#### même qté

sf 1re rangée **par pression×temps dispenseur** Ajustage à chaque collage (fluidité, température) temps de pose ~ 30 mins

colle ~ validité qq h

#### points centrés

décalage 1er points, rang exterieurs

0,2 mm

Polymerisation

1 nuit à 40°C

wafers aspirés et posés dessus à distance fixe **point de colle Ø 1–2 mm × 0,3mm** moins homogène



### **Observed issues**



mpv\_layer3\_xy



... and not so good layers

- Inhomogeneous response to MIPs
  - Partially even no response at all, in particular at the wafer boundaries
  - To be understood, may require dedicated aging studies
- Have since last week access to the different stages of the ASICs
- => <u>major</u> debugging tool
- In any case less good layers will be replaced in coming months



6

• We have good layers ...

- Homogeneous response to MIPs over layer surface
- Here white cells are masked cells due to PCB routing
  - Understood and will be corrected

Irles A., 2nd June. 2022

-20

0

20 40

60

# **Observed issues: strategy**

- Hot topic... for after the beam test.
  - We started a "educated" brainstorming between most actors on how to address this issue
- Mechanic issue ?
  - bending of the PCBs
  - vibrations
- Chemical issue ? (degradation of the glue)
  - Due to ambiental circumstances? (humidity, change of temp....)
- Improvable method? (curing time? Etc?)
- Access to resources like climate chambers, vibration tables etc?
  - Under discussion.
  - CERN? IN2P3? IFIC?
- IFIC budget request for a gluing robot + material + postdoc in order to contribute on
  - the systematic gluing aging studies, module assembly
  - Simulation studies & data analysis
- Kyushu U. also performed gluing on sensors
  - Dedicated comparison between performance of both ?





Irles A., 2nd June. 2022



# CALICO IFIC A





We (i.e. Mainly Kyushu) have tested several wafer types in previous years



### Observations in recent years (see also backup for more details)

- · Split or no guard ring lead to suppression of square events
- In prototype we still use full wafers with 0 or 1 guard ring
- General trend of reduction of bias voltage
- Can operate 500mum wafers at 60-80 V in full depletion



- Cut size determine the actual sensitive area of a wafer
- Different designs mainly on test samples of "baby wafers"
- The "Hamamatsu" standard is still 0 or 1 full guard ring
  - 0 is "fake 0" guard ring, in fact there is still a small guard ring
    - Towards 8" wafers?
      - General trend (e.g. CMS) is to use 8" wafers
      - Larger surface/wafer =>smaller cost
      - Standard thickness 725mum

Roman Pöschl

Irles A., 2nd June. 2022

ILD Meeting May 2022

i IFIC

18