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LAr-Calorimeter

Triangular detector pulses → Analogue pulse shaping → Digitization
Digital energy reconstruction with Optimal Filter (OF) + maximum
finder for trigger

E (t) =
∑

i
ci · x(t − i)

https://cds.cern.ch/record/1095928 [3], http://cds.cern.ch/record/1701107 [2] 2 / 12
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CNN architecture for energy reconstruction
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CNN example sequence
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Energy resolution

CNNs show better energy resolution and less bias than OF
3-Conv is best performing CNN
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CNN energy resolution as a function of gap
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OF with MaxFinder
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3-Conv CNN

3-Conv CNN

→ Significant improvement in reconstruction of overlapping pulses

6 / 12



Introduction CNN architecture and performance Firmware implementation

Requirements for use in off-detector electronics

Latency below ≈ 150 ns
Implementation on Intel Agilex FPGA (formerly Stratix 10)

384 input channels @40 MHz per FPGA
Limited resources (DSPs and logic cells (ALMs))

Itegration with rest of readout firmware: Liquid Argon Signal
Processor (LASP)
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CNN firmware implementation

Flexible CNN model implemented directly in
VHDL
Lookup table required for sigmoid activation
function
Optimized for DSP usage and latency
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DSPs can be chained for efficient multiply-add structures
Depends on special architecture of Stratix 10 DSPs
Fixed point calculation with 18 bit total bit width
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Relative deviation between firmware and software
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Compilation results for multiplexing

4-Conv 1x 4-Conv 8x 4-Conv 12x 3-Conv 8x 3-Conv 12x

fmax 432 MHz 377 MHz 346 MHz 387 MHz 351 MHz

ALMs 5473 15988 18453 16077 20107

DSP usage independent of multiplexing (3-Conv: 46, 4-Conv: 42)
ALM usage still needs optimization
Latency for 4-Conv with 12× multiplexing: 72 clock cycles (=
150 ns if performance is optimized to run at targeted 480 MHz)
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Summary

Flexible VHDL implementation supporting CNNs with dilation and
input concatenate layers for 1D continuous input stream
Good agreement between CNN firmware implementations and
software (Keras and fixed-point reference model)
Currently depends on project specific framework
Only runs on Intel Stratix 10 (and similar Intel FPGAs)
Maximum clock frequency and ALM usage in multiplexed version
need further optimization
Further information about training and performance available in [1]
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Plans for the future

Training: More studies about robustness for slight variations in input
Integrate with rest of readout chain and test on hardware
demonstrator
Investigate high-level synthesis options (HLS4ML) as alternative
Tentative if CNN implementation proves useful outside of ATLAS
LAr context: Split out of LASP framework and publish as open
source project
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