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@ Triangular detector pulses — Analogue pulse shaping — Digitization
e Digital energy reconstruction with Optimal Filter (OF) + maximum

finder for trigger
E(t) = ZC,'-X(t— I)

https://cds.cern.ch/record/1095928 [3], http://cds.cern.ch/record/1701107 [2] 2/12
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CNN architecture for energy reconstruction
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CNN example sequence
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Firmware implementation
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@ Input sequence from
AREUS simulation

@ Tagging sub-network
trained to output
detection probability
based on binary
training target
(240 MeV threshold)

o Energy
reconstruction with
true hit energy as
target
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Energy resolution

AREUS Simulation
| EMB Middle (n,0) = (0.5125, 0.0125)
<u> = 140, E‘T'“e > 240 MeV

—*— Mean * Std-Dev
—— Median + 98% ranae
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@ CNNs show better energy resolution and less bias than OF

@ 3-Conv is best performing CNN
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CNN energy resolution as a function of gap
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— Significant improvement in reconstruction of overlapping pulses
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Requirements for use in off-detector electronics

o Latency below = 150 ns

@ Implementation on Intel Agilex FPGA (formerly Stratix 10)
e 384 input channels @40 MHz per FPGA
o Limited resources (DSPs and logic cells (ALMs))

o ltegration with rest of readout firmware: Liquid Argon Signal

Processor (LASP)

LAr Signal Processor (LASP)
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@ Flexible CNN model implemented directly in g

VHDL

@ Lookup table required for sigmoid activation

function

Optimized for DSP usage and latency

Firmware implementation
0®0000

DSP
™
H——Y
™
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DSPs can be chained for efficient multiply-add structures
Depends on special architecture of Stratix 10 DSPs
Fixed point calculation with 18 bit total bit width

Data generation
in AREUS

Training in
Keras

| Model conversion
“Itool

Simulation/

Compilation

VHDL implemen-
tation of CNN
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between firmware and software

@ Only samples with

predicted energy over
240 MeV included

Good agreement
between firmware and
software

Inherent deviations due
to fixed point
calculation

— Potential problems
with very high/low
weights
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Compilation results for multiplexing

4-Conv 1x 4-Conv 8x 4-Conv 12x 3-Conv 8x 3-Conv 12x
fnax 432 MHz 377 MHz 346 MHz 387 MHz 351 MHz
ALMs 5473 15988 18453 16077 20107

@ DSP usage independent of multiplexing (3-Conv: 46, 4-Conv: 42)
@ ALM usage still needs optimization

@ Latency for 4-Conv with 12x multiplexing: 72 clock cycles (=
150 ns if performance is optimized to run at targeted 480 MHz)
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Summary

o Flexible VHDL implementation supporting CNNs with dilation and
input concatenate layers for 1D continuous input stream

@ Good agreement between CNN firmware implementations and
software (Keras and fixed-point reference model)

@ Currently depends on project specific framework
@ Only runs on Intel Stratix 10 (and similar Intel FPGAs)

@ Maximum clock frequency and ALM usage in multiplexed version
need further optimization

e Further information about training and performance available in [1]
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Plans for the future

@ Training: More studies about robustness for slight variations in input

@ Integrate with rest of readout chain and test on hardware
demonstrator

@ Investigate high-level synthesis options (HLS4ML) as alternative

@ Tentative if CNN implementation proves useful outside of ATLAS
LAr context: Split out of LASP framework and publish as open
source project
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