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• Deep neural networks are widely used for reconstruction and 
analyses but only few examples exist yet within low-level 
hardware triggers
• Tight constraints on data rate and latency
• E.g. ATLAS L1 Trigger for Run-3 (FPGA based):

• 40 MHz incoming data rate, 
• <2.5μs overall latency, i.e. O(100ns) for inference of DNN

• Our approach so far:
• Hardware centric, bottom-up approach for implementation of 

general neural networks on FPGAs
• Focus on LHC like conditions: 40MHz data rate and latency of 

O(10)-O(100) ns 



• Programmable look-up tables (LUT, 1.2M)
• Combinational logic

• Registers (FF, 2.4M)
• Bit storage

• Programmable routing
• LUT/register wiring

• Specialized units
• DSPs (6840 ’simple ALUs’,  

MULT w/ subsequent ADD)
• Block memory (~10MB)
• …

• Lots of IO, computation; predictable, ns-scale latencies
1

FPGAs (“Field Programmable Gate Array”) 
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Image: https://medium.com/@ckyrkou/what-are-fpgas-c9121ac2a7ae

Xilinx US+ XCVU9P-2



• Focus on efficient resource usage 
• No in-depth understanding of implementation required by user (similar 

to hls4ml); easy translation from trained model to VHDL
• Arithmetics implementation

• Fixed point with configurable precision (layer-wise)
• <16 bits sufficient for DNNs, easier to implement

• Inference performance limit (theoretical)
• DSP for multiply-accumulate (MAC) operations

• 1 MAC/cycle per DSP
• Xilinx US+ XCVU9P-2 ⟹ ~5 TMAC/s

• LHC data frequency (40 MHz): ~100k - ~150k MAC/event
• Support at least the following DNN layers

• 2D convolution (image recognition), fully connected, maxpooling
1

Development aims and arithmetics/performance
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Fully-connected layer design
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• Implement neuron processing in DSP pipelines

• Inputs completely reusable
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• Simple design with easy parallelisation 

i0

Input Dense  
layer

i1

i2



1

Fully-connected layer design

5Christian Schmit /16

cycle
0

1

2

3

4

5

6

DSP 0 1 2
i� w�,� i� w�,�

i� w�,�

i� w�,�

i� w�,�

i� w�,�

i0 w0,0

i0 w1,0

i0 w2,0

i0 w3,0

i1 w0,1

i1 w1,1

i1 w2,1

i1 w3,1

i2 w0,2

i2 w1,2

i2 w2,2

i2 w3,2

i0 w0,0

i0 w1,0 i1 w0,1

o�

o�

o�

o0

o1

o2

o3

spatial axis (downwards the DSP pipeline)

te
m
p
or
al

ax
is

• Exploit: every neuron needs every input
• Implement neuron processing in DSP pipelines

• Inputs completely reusable
• Only weight loading/fetching/multiplexing 
• Simple design with easy parallelisation 

i0

Input Dense  
layer

i1

i2



1

Fully-connected layer design

5Christian Schmit /16

cycle
0

1

2

3

4

5

6

DSP 0 1 2
i� w�,� i� w�,�

i� w�,�

i� w�,�

i� w�,�

i� w�,�

i0 w0,0

i0 w1,0

i0 w2,0

i0 w3,0

i1 w0,1

i1 w1,1

i1 w2,1

i1 w3,1

i2 w0,2

i2 w1,2

i2 w2,2

i2 w3,2

i0 w0,0

i0 w1,0 i1 w0,1

o�

o�

o�

o0

o1

o2

o3

spatial axis (downwards the DSP pipeline)

te
m
p
or
al

ax
is

• Exploit: every neuron needs every input
• Implement neuron processing in DSP pipelines

• Inputs completely reusable
• Only weight loading/fetching/multiplexing 
• Simple design with easy parallelisation 

i0

Input Dense  
layer

i1

i2



1

Fully-connected layer design

5Christian Schmit /16

cycle
0

1

2

3

4

5

6

DSP 0 1 2
i� w�,� i� w�,�

i� w�,�

i� w�,�

i� w�,�

i� w�,�

i0 w0,0

i0 w1,0

i0 w2,0

i0 w3,0

i1 w0,1

i1 w1,1

i1 w2,1

i1 w3,1

i2 w0,2

i2 w1,2

i2 w2,2

i2 w3,2

i0 w0,0

i0 w1,0 i1 w0,1

o�

o�

o�

o0

o1

o2

o3

spatial axis (downwards the DSP pipeline)

te
m
p
or
al

ax
is

• Exploit: every neuron needs every input
• Implement neuron processing in DSP pipelines

• Inputs completely reusable
• Only weight loading/fetching/multiplexing 
• Simple design with easy parallelisation 

i0

Input Dense  
layer

i1

i2

+



1

Implementation on the FPGA
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• Use multiple but shorter pipelines with additional adder in parallel 
(“neuron unit”) to reduce latency
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2D Convolution Layer

7Christian Schmit /16

slice

slice

slice

slice

h
ei
gh

t

ch
an
ne
l

width

complete data view

row

row

row

row

row

row

row

row

row

row

row

row

row

row

row

row

row

row

row

row

h
ei
gh

t

channel

row view

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

5 6 7 8 9

5 6 7 8 9

5 6 7 8 9

10 11 12 13 14

10 11 12 13 14

rows / channel axis

slices /
height
axis

• 2D convolution way more difficult 
to implement
• Naive implementation would  

need large amount of resources  
for multiplexing of inputs/weights

• Optimised approach
• Use “slices” (channel x width) and  

“rows” (fixed height and channel) as 
basic quantities
• “Row units” yield good compromise 

of computational efficiency and  
input/weight reuse
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Firmware implementation
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Implementation results: resource usage
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• Main limitation is  
number of DSPs
• Fully-connected: 

 

• 2D-Convolution: 
 
 

Xilinx US+ XCVU9P-2  
(6840 DSPs, 2.4M FF, 1.2M LUT)

NDSP ⇡ NI ·NN · fData

fFPGA
<latexit sha1_base64="YoQugI19BHwhclWXuhrbMmZL9vU="></latexit>

Fully-connected layer

2D-Convolution layer

NDSP ⇡ VI · VK · fData

fFPGA
<latexit sha1_base64="37bSqb6TiR6xkDOMKNZxiDqEAFY="></latexit>
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Implementation results: operating frequency
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• Maximum layer frequency depends on resource usage (signal propagation, 
routing complexity, …)
• Fully-connected and pooling layers are less complex -> higher frequency

• Can run at >=400 MHz even for layers with 10k operations
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Network creation toolkit
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• Python based toolkit for automated network creation
• Starting point: trained Keras network

• Supported layers: Fully-connected, 2D-Conv, Maxpool
• Activation: relu (best for FPGA)

• Additional design parameters can be specified: 
• Precision (integer and fractional bits)
• Pipelining and routing behaviour

• Output:
• VHDL code of the corresponding network
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Network creation toolkit: example usage
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Results: timing closure
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• Successful network implementations up to 15k multiplications for a 
data frequency of 40 MHz (e.g. LHC)
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Results: overall latency
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• Latency depends on achievable frequency
• Full network output can be available in ~100ns 

C =
fFPGA

fData
<latexit sha1_base64="dWHKj4P8J2/Hmg4TIrL07ewkahs=">AAACBHicbZDLSsNAFIYn9VbrLeqym8EiuCpJFXQjVCvqsoK9QBvCZDpph04mYWYilJCFG1/FjQtF3PoQ7nwbJ20W2vrDwMd/zuHM+b2IUaks69soLC2vrK4V10sbm1vbO+buXluGscCkhUMWiq6HJGGUk5aiipFuJAgKPEY63riR1TsPREga8ns1iYgToCGnPsVIacs1y43zvi8QTnw3uW7eXKRpRldIoTR1zYpVtaaCi2DnUAG5mq751R+EOA4IV5ghKXu2FSknQUJRzEha6seSRAiP0ZD0NHIUEOkk0yNSeKidAfRDoR9XcOr+nkhQIOUk8HRngNRIztcy879aL1b+mZNQHsWKcDxb5McMqhBmicABFQQrNtGAsKD6rxCPkM5E6dxKOgR7/uRFaNeq9nG1dndSqV/mcRRBGRyAI2CDU1AHt6AJWgCDR/AMXsGb8WS8GO/Gx6y1YOQz++CPjM8f0L+YNw==</latexit>
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Activation function
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• RELU activation:
• Resource usage: B/2 LUTs or (B-1) FFs for B bit values   

• Any other activation could be implemented using value-
derivative lookup tables
• Example for tanh and sigmoid with 16 sample points:

Figure 7: Example for a linear interpolation of activations functions. Python-based case study,
every value was rounded to a granularity of only 2�6 during all steps of the interpolation, only 16
sample points were used.

which are looked up for the base value and first derivative. The multiplication of two 8 bit values
and final addition would cost approximately 70 LUTs, leaving a total of ⇠ 140 LUTs per activation
unit to implement a relatively precise look-up with 256 sample points and linear interpolation in
between.12 Figure 7 shows a case study, where we linearly interpolated the comparably complicated
tanh and sigmoid functions. To demonstrate the loose precision requirements, we used only sixteen
sample points within the shown intervals, and rounded to a granularity of only 2�6 during all steps
of the interpolation (i.e. the value and derivate samples themselves were rounded, the interpolation
position was rounded and multiplication and addition results were rounded). This case study nicely
demonstrates that even with only very low precision and very few sample points, it is possible to
have a surprisingly accurate approximation of non-linear activations. In these cases, it would be
possible to implement the look-up of both base value and derivative with approximately ten LUTs
and the multiplication and addition with coarsely 50 LUTs. Given that there would usually be only
a single activation unit at the end of a many-DSP pipeline, one can expect an extra utilization of
much less than 10 LUTs per DSP even for a precise interpolation.

4 Network creation toolkit

4.1 Layer synchronization considerations

When connecting fully-connected layers to fully-connected layers, it is only reasonable to select a
pipeline parallelization factor P in the successor layer that equals the number of neuron units NNU
in the predecessor layer. By that, every input is used exactly when it is made available, and no extra
bu�ering structures or delays are necessary.

When connecting layers with ’arbitrary’ input and output schemes, there is no sense in starting
the second layer earlier or later than necessary to run without interruption. This means that

12The exact LUT cost depends on some details, but less than 200 is seen as reasonable assumption for many cases.
Characteristics like base value and derivative saturation could be further exploited for an even decreased LUT requirement.

– 15 –
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Summary
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• Full networks consisting of 2D-Conv, Maxpooling and Fully-connected layers 
implemented on FPGAs
• Can cope with data frequencies of 40 MHz, full network latencies of O(100ns)
• Publication: 2019 JINST14 P09014

• Lessons learned:
• Modern FPGAs are not monolithic 

• Potential bottleneck depending on  
inputs and network architecture 
(only ~17k inter-chip connections)

• Data input distributed over all SLRs, especially problematic for larger 
convolution layers at the start of the network
• Routing via design tool (Xilinx Vivado) becomes challenging once resource 

usage increases (larger networks)
• Head hunters love Students with ML and FPGA knowledge…

Large FPGA Methodology Guide www.xilinx.com 11
UG872 (v14.3) October 16, 2012

Chapter 3

Stacked Silicon Interconnect (SSI)

This guide addresses all designs targeting large FPGA devices. This chapter discusses 
designs specifically using the Stacked Silicon Interconnect (SSI) technology.

The SSI technology combines multiple Super Logic Region (SLR) components mounted on 
a passive Silicon Interposer. 

Compared to traditional devices, SSI technology enables Xilinx to construct FPGA devices 
with the following characteristics:

• The devices are much larger.

• The devices have more dedicated features.

• The devices have a lower power envelope.
Note: The terms traditional device and monolithic device refer to devices not using SSI technology.

X-Ref Target - Figure 3-1

Figure 3-1: Representative SSI Device Construction
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Backup
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Example network architectures
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Table 1: Implementation results for example networks trained for the MNIST digit recognition
task. Activation relu used for all but the last layer, which had a ’linear’ activation and always had
NN = 10 neurons. The single-channel input has a size of 14⇥ 14, if not stated otherwise. WNS was
left out where no WNS occurred, i.e. timing was met for these designs. For convolutional layers,
the kernel shape (HK ⇥ WK ⇥ NK) is specified, for pooling layers the pooling area (HP ⇥ WP) and
for fully-connected layers the number of neurons NN is specified. The DSP e�ciency refers to the
relative amount of non-idling DSP cycles. For reference, the Xilinx UltraScale+ XCVU9P target
FPGA features 6840 DSPs, 2160 BRAMs, approximately 1.2 million LUTs and twice as many FFs.

Architecture (see text) MACs TP WNS latency NLUT NFF
(layer information) (DSP e�.) (ns) (ns) (cycles) NDSP NBRAM

ArcA1 (C = 16) (input (7 ⇥ 7)) 334 1.562 - 56 1793 3571
(2 ⇥ 2 ⇥ 1)-(2 ⇥ 2)-10 (0.485) 43 10.5
ArcA2 (C = 14) 1089 1.786 - 60 5060 9706
(2 ⇥ 2 ⇥ 1)-(2 ⇥ 2)-7 (0.630) 108 17
ArcA3 (C = 14) (input (7 ⇥ 7)) 1024 1.786 - 57 3051 5654
(2 ⇥ 2 ⇥ 3)-(2 ⇥ 2)-16) (0.620) 118 19
ArcA4 (C = 13) 3188 1.923 - 63 8689 16219
(2 ⇥ 2 ⇥ 2)-(2 ⇥ 2)-17) (0.774) 317 54.5
ArcA5 (C = 13) 7854 1.923 - 68 15567 28450
(2 ⇥ 2 ⇥ 4)-(2 ⇥ 2)-25 (0.967) 625 93.5
ArcA6 (C = 11) 12884 2.273 - 68 20962 34711
(3 ⇥ 3 ⇥ 4)-(2 ⇥ 2)-50 (0.894) 1310 166
ArcB1 (C = 12) 8858 2.083 - 76 18587 32886
(2 ⇥ 2 ⇥ 4)-(2 ⇥ 2)-(2 ⇥ 2 ⇥ 4)-25 (0.812) 909 99.5
ArcB1 (C = 16) 8858 2.083 - 87 17205 32760
(2 ⇥ 2 ⇥ 4)-(2 ⇥ 2)-(2 ⇥ 2 ⇥ 4)-25 (0.812) 713 71.5
ArcB3 (C = 11) 11362 2.273 - 79 28383 47140
(2 ⇥ 2 ⇥ 6)-(2 ⇥ 2)-(2 ⇥ 2 ⇥ 4)-25 (0.792) 1305 102.5
ArcB2 (C = 10) 15610 2.500 -0.134 84 40998 69333
(3 ⇥ 3 ⇥ 6)-(2 ⇥ 2)-(3 ⇥ 3 ⇥ 6)-25 (0.855) 1825 68
ArcB3 (C = 16) 11362 1.562 -0.014 93 26006 45065
(2 ⇥ 2 ⇥ 6)-(2 ⇥ 2)-(2 ⇥ 2 ⇥ 4)-25 (0.825) 861 71.5
ArcC1 (C = 8) 24076 3.125 -0.045 93 37528 61388
(3 ⇥ 3 ⇥ 6)-(2 ⇥ 2)-(2 ⇥ 2 ⇥ 8)-50-25 (0.934) 3222 338.5
ArcD5 (C = 9) 26120 2.778 -0.060 86 32592 51865
(2 ⇥ 2 ⇥ 4) � (2 ⇥ 2 ⇥ 2) � (2 ⇥ 2 ⇥ 2) � 50 � 25 (0.928) 3128 353

– 20 –

• Input: 14x14
• Naming 

convention:
• 2D-Conv:

• (HK x WK x 
NK)

• Maxpool:
• (HP x WP)

• Dense
• NNeuron
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Fully-connected: Implementation on the FPGA
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• Use multiple but shorter pipelines with additional adder in parallel 
(“neuron unit”) to reduce latency
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2D-Convolution: Firmware implementation
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Maxpooling layer
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(b) Pooling layer schematic. A bu�er memory receives inputs and
row-wise write enable signals. Internally, the pooling row units re-
ceive their inputs from working memories, which provide selected
input rows. Finally, results are multicast. Control infrastructure
was left out for clarity reasons.

Figure 6: 2D maximum pooling layer design.

each cycle. This process is driven by a controller entity, which also controls the output write
enabling. Row unit results are again multicast to any position in which they are needed at some
cycle.

3.5 Activation functions

Apart from the obvious linear/identity activation, we currently support the rectified linear unit

(relu) activation, which is quite commonly used in (convolutional) deep neural networks, and has
the advantage that it can be implemented with very little cost on FPGAs.

By explicitly instantiating on a design primitive level, we were able to guarantee a relu imple-
mentation that requires either

⌅
B

2
⇧

LUTs or B � 1 FFs per relu unit working on B bit values. For
the LUT-based implementation, we used that Xilinx UltraScale+ LUTs support dual-output use for
up to five common inputs. The relu is then obtained by providing two input value bits and the input
value sign bit to a LUT, which either replicates the two input bits on its outputs (positive sign) or
sets the outputs to zero (negative sign). The FF-based implementation makes use of the FDRE
primitive11 for every non-sign input value bit. The flip-flops simply store the input value bits if the
sign is positive and reset to ’0’ if the sign is negative, i.e. the sign bit acts as reset control bit. This
is an elegant demonstration of how advanced storage primitives can be used to implement not only
storage, but also simple computations, which can save LUT resources for more complex operations.

Other activations can be implemented in the future. One way of doing this is by either value-
based look-up tables or by value-derivative-based look-up tables. For example, with 16 bit activation
unit input values, one could use the 8 most significant bits to look up an interpolation base value and
a first derivative, and then add the first derivative multiplied by the eight least significant input bits
to the base value. With the Xilinx US+ architecture, both look-ups could be done at an approximate
LUT cost of 2 · 28�6 · 8 = 64, the first two comes from two look-ups, the factor 28�6 from the cost
for looking up one bit for an 28-deep address space and the eight comes from an assumed eight bits

11This realizes a D-type flip-flop with a synchronous reset and a clock enable input, the latter was tied to a logical ’1’.
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primitive11 for every non-sign input value bit. The flip-flops simply store the input value bits if the
sign is positive and reset to ’0’ if the sign is negative, i.e. the sign bit acts as reset control bit. This
is an elegant demonstration of how advanced storage primitives can be used to implement not only
storage, but also simple computations, which can save LUT resources for more complex operations.

Other activations can be implemented in the future. One way of doing this is by either value-
based look-up tables or by value-derivative-based look-up tables. For example, with 16 bit activation
unit input values, one could use the 8 most significant bits to look up an interpolation base value and
a first derivative, and then add the first derivative multiplied by the eight least significant input bits
to the base value. With the Xilinx US+ architecture, both look-ups could be done at an approximate
LUT cost of 2 · 28�6 · 8 = 64, the first two comes from two look-ups, the factor 28�6 from the cost
for looking up one bit for an 28-deep address space and the eight comes from an assumed eight bits

11This realizes a D-type flip-flop with a synchronous reset and a clock enable input, the latter was tied to a logical ’1’.
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• All inputs are only needed once
• no way of saving resources or input accesses 
• no need to use complicated row allocation patterns 

• For simplicity reasons, the concept of output rows and row 
units was still maintained 
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Network MACs assuming LHC Data Rate of 40MHz
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