

Research and Innovation

SESAME - AFRICA ONLINE WORKSHOP

Synchrotron light applied to the African Earth Sciences

Bjorn von der Heyden

Stellenbosch University

Integrated Mineral and Energy Resource Analysis

DST-NRF Centre of Excellence for

Background photo credit: www.esrf.eu

Research and Innovation

Support and Advancement

SESAME - AFRICA ONLINE WORKSHOP

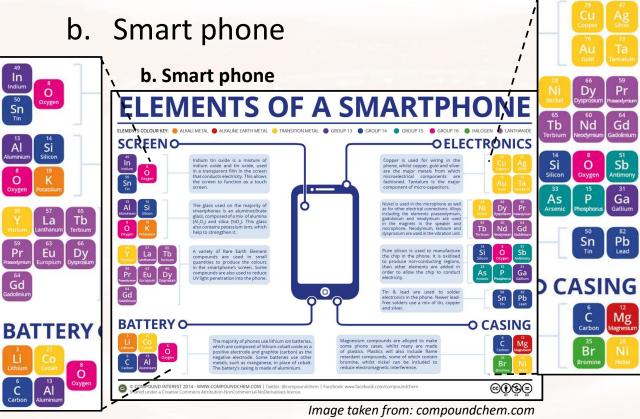
Synchrotron light applied to the African Earth Sciences

Bjorn von der Heyden

Stellenbosch University

Integrated Mineral and Energy Resource Analysis

DST-NRF Centre of Excellence for


Background photo credit: www.esrf.eu

How did you dial into this presentation?

- a. Computer
- b. Smart phone

How did you dial into this presentation?

a. Computer

a. Computer

Material name	Content (% of total weight)	Weight of material in computer (kg)	Use	Location
Plastics	22.9907	6.26	Insulation	Cable, Housing
Lead	6.2988	1.72	Metal joining	Funnel glass in CRTs, PWB
Aluminum	14.1723	3.86	Structural, Conductivity	Housing, CRT, PWB, connectors
Germanium	0.0016	< 0.1	Semiconductor	PWBs
Gallium	0.0013	< 0.1	Semiconductor	PWBs
Iron	20.4712	5.58	Structural, Magnetivity	Housing,CRTs, PWBs
Tin	1.0078	0.27	Metal joining	PWBs, CRTs
Copper	6.9287	1.91	Conductivity	CRTs, PWBs, connectors
Barium	0.0315	< 0.1	Å	Panel glass in CRTs
Nickel	0.8503	0.23	Structural, Magnetivity	Housing, CRT, PWB
Zinc	2.2046	0.6	Battery, Phosphor emitter	PWB, CRT
Tantalum	0.0157	< 0.1	Capacitor	Capacitors/PWB, power supply
Indium	0.0016	< 0.1	Transistor, rectifier	PWB
Vanadium	0.0002	< 0.1	Red Phosphor emitter	CRT
Terbium	0	0	Green phosphor activator, dopant	CRT, PWB
Beryllium	0.0157	< 0.1	Thermal Conductivity	PWB, connectors
Gold	0.0016	< 0.1	Connectivity, Conductivity	Connectivity, conductivity/PWB, connectors
Europium	0.0002	< 0.1	Phosphor activator	PWB
Titanium	0.0157	< 0.1	Pigment, alloying agent	Housing
Ruthenium	0.0016	< 0.1	Resistive circuit	PWB
Cobalt	0.0157	< 0.1	Structural, Magnetivity	Housing, CRT, PWB
Palladium	0.0003	< 0.1	Connectivity, Conductivity	PWB, connectors
Manganese	0.0315	< 0.1	Structural, Magnetivity	Housing, CRT, PWB
Silver	0.0189	< 0.1	Conductivity	Conductivity/PWB, connectors
Antinomy	0.0094	< 0.1	Diodes	Housing, PWB, CRT
Bismuth	0.0063	< 0.1	Wetting agent in thick film	PWB
Chromium	0.0063	< 0.1	Decorative, Hardner	Housing
Cadmium	0.0094	< 0.1	Battery, blue-green Phosphor emitter	Housing, PWB, CRT
Selenium	0.0016	0.00044	Rectifiers	rectifiers/PWB
Niobium	0.0002	< 0.1	Welding	Housing
Yttrium	0.0002	< 0.1	Red Phosphor emitter	CRT
Rhodium	0	Å	Thick film conductor	PWB
Platinum	0	A	Thick film conductor	PWB
Mercury	0.0022	< 0.1	Batteries, switches	Housing, PWB
Arsenic	0.0013	< 0.1	Doping agent in transistors	PWB
Silica	24.8803	6.8	Glass, solid state devices	CRT.PWB

Source: Microelectronics and Computer Technology Corporation (MCC). 1996. Electronics Industry Environmental Roadmap. Austin, TX: MCC.

Image taken from: specialtymetals.com

Earth Sciences and the African economy

- The African economy is still highly reliant on the 'primary sector' as a major income generator which sustains millions of livelihoods.
- Direct linkages between earth sciences and mining, less direct linkages with forestry, fishing and agriculture.
- However, these latter sectors certainly require a healthy natural environment.
- Focus on the mining sector and its effect on the natural environment

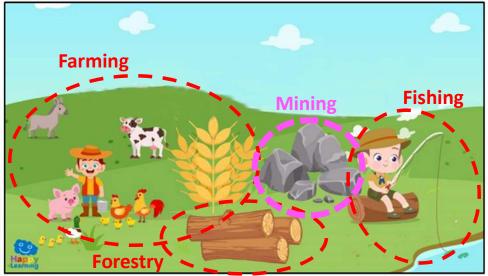


Image taken from: happylearning.tv

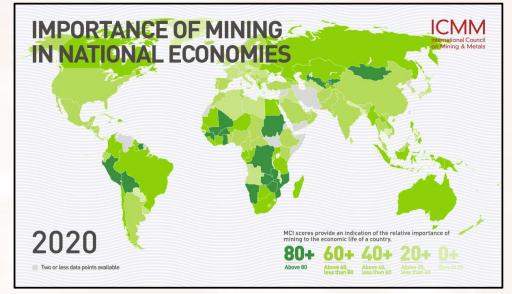
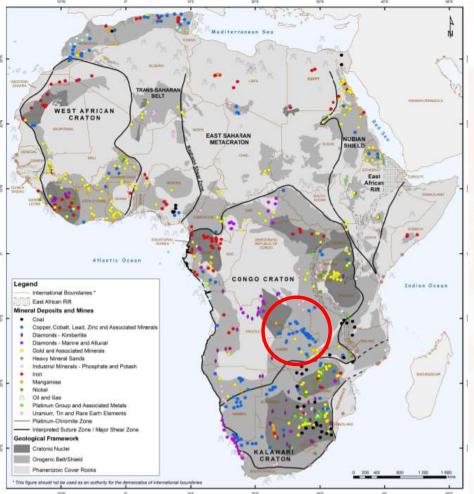


Image taken from: www.icmm.com (5th Mining Contribution Index (2020))

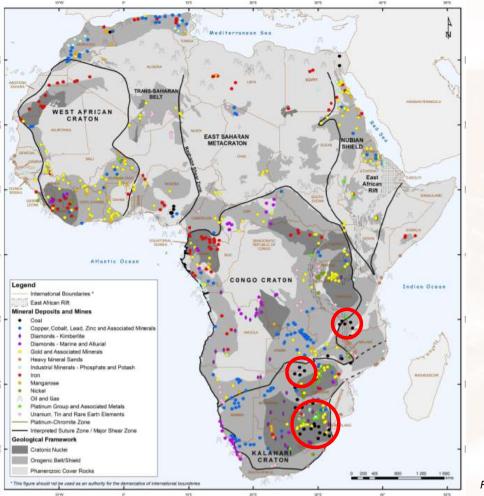

- Africa is blessed with a rich mineral • endowment.
- Examples of great mineral fields include: •
 - Lake Victoria, West African, and Witwatersrand gold fields
 - **Central African Copper Belt** ٠
 - Karoo-aged coal fields ٠
 - Kalahari Manganese Fields ٠
 - Moroccan sedimentary phosphate •
 - Southern African diamond fields •
 - West African Bauxite ٠
 - Bushveld igneous complex ٠
- Associated environmental degradation • influenced by speciation, mobility and chemical fate of deleterious elements released during mining.

GOLD

Image from: legit.ng

- Africa is blessed with a rich mineral endowment.
- Examples of great mineral fields include:
 - Lake Victoria, West African, and Witwatersrand gold fields
 - Central African Copper Belt
 - Karoo-aged coal fields
 - Kalahari Manganese Fields
 - Moroccan sedimentary phosphate
 - Southern African diamond fields
 - West African Bauxite
 - Bushveld igneous complex
- Associated environmental degradation influenced by speciation, mobility and chemical fate of deleterious elements released during mining.

COPPER


Image from: globaltrading.com

COBALT

Image from: investingnews.com

- Africa is blessed with a rich mineral endowment.
- Examples of great mineral fields include:
 - Lake Victoria, West African, and Witwatersrand gold fields
 - Central African Copper Belt
 - Karoo-aged coal fields
 - Kalahari Manganese Fields
 - Moroccan sedimentary phosphate
 - Southern African diamond fields
 - West African Bauxite
 - Bushveld igneous complex
- Associated environmental degradation influenced by speciation, mobility and chemical fate of deleterious elements released during mining.

COAL

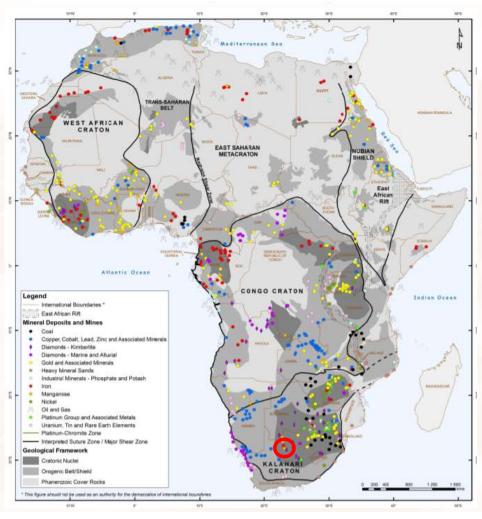
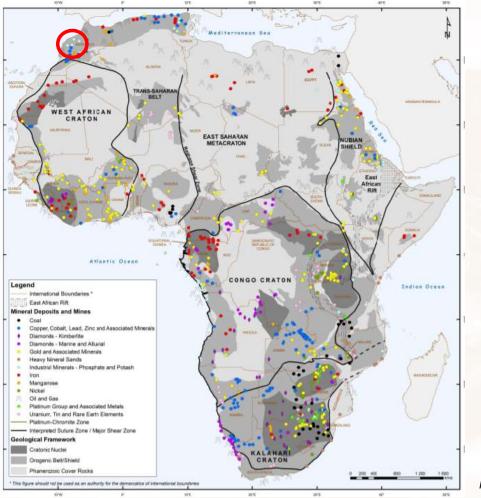


Image from: usgs.gov

Image from: sustainable-carbon.org

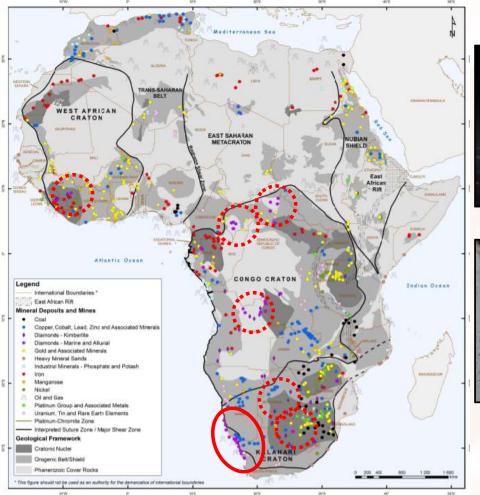
- Africa is blessed with a rich mineral endowment.
- Examples of great mineral fields include:
 - Lake Victoria, West African, and Witwatersrand gold fields
 - Central African Copper Belt
 - Karoo-aged coal fields
 - Kalahari Manganese Fields
 - Moroccan sedimentary phosphate
 - Southern African diamond fields
 - West African Bauxite
 - Bushveld igneous complex
- Associated environmental degradation influenced by speciation, mobility and chemical fate of deleterious elements released during mining.



MANGANESE

Image from: relianttechnologyinstitute.com

- Africa is blessed with a rich mineral endowment.
- Examples of great mineral fields include:
 - Lake Victoria, West African, and Witwatersrand gold fields
 - Central African Copper Belt
 - Karoo-aged coal fields
 - Kalahari Manganese Fields
 - Moroccan sedimentary phosphate
 - Southern African diamond fields
 - West African Bauxite
 - Bushveld igneous complex
- Associated environmental degradation influenced by speciation, mobility and chemical fate of deleterious elements released during mining.



Phosphate

Image from: Alibaba.com

- Africa is blessed with a rich mineral endowment.
- Examples of great mineral fields include:
 - Lake Victoria, West African, and Witwatersrand gold fields
 - Central African Copper Belt
 - Karoo-aged coal fields
 - Kalahari Manganese Fields
 - Moroccan sedimentary phosphate
 - Southern African diamond fields
 - West African Bauxite
 - Bushveld igneous complex
- Associated environmental degradation influenced by speciation, mobility and chemical fate of deleterious elements released during mining.

Diamonds

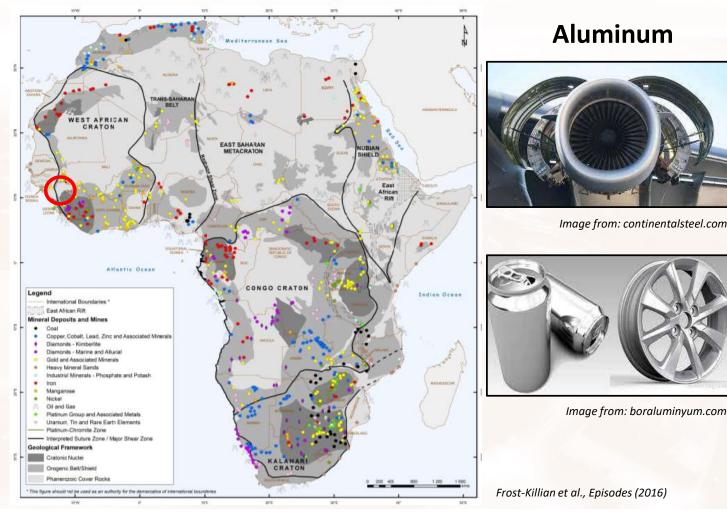


Image from: advancedsciencenews.com

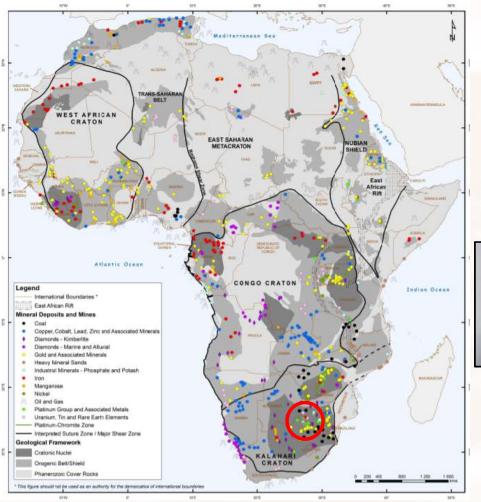
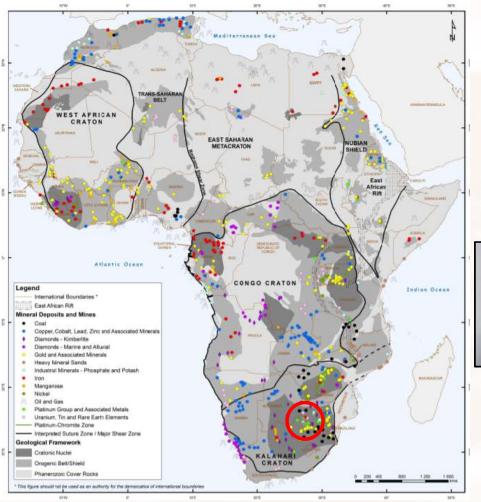


Image from: strategiesonline.net

- Africa is blessed with a rich mineral endowment.
- Examples of great mineral fields include:
 - Lake Victoria, West African, and Witwatersrand gold fields
 - Central African Copper Belt
 - Karoo-aged coal fields
 - Kalahari Manganese Fields
 - Moroccan sedimentary phosphate
 - Southern African diamond fields
 - West African Bauxite
 - Bushveld igneous complex
- Associated environmental degradation influenced by speciation, mobility and chemical fate of deleterious elements released during mining.

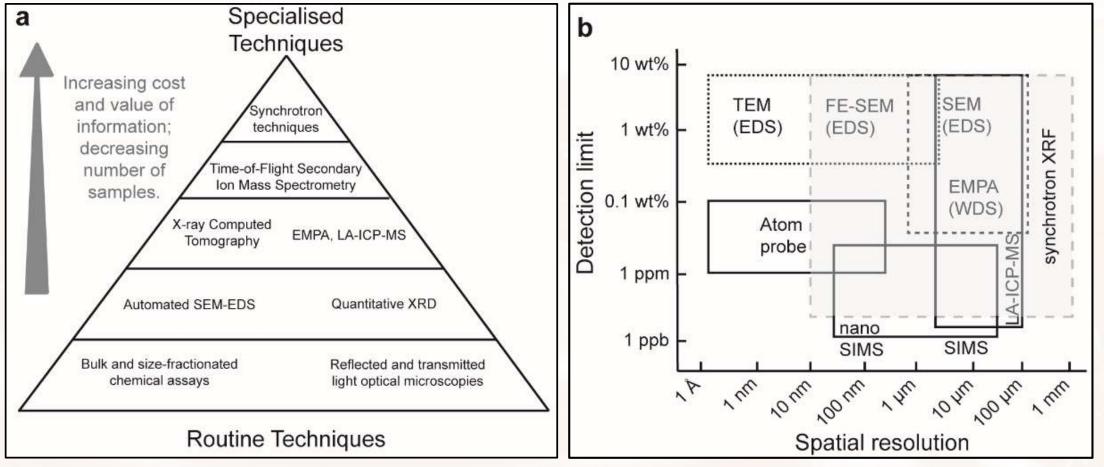
- Africa is blessed with a rich mineral endowment.
- Examples of great mineral fields include:
 - Lake Victoria, West African, and Witwatersrand gold fields
 - Central African Copper Belt
 - Karoo-aged coal fields
 - Kalahari Manganese Fields
 - Moroccan sedimentary phosphate
 - Southern African diamond fields
 - West African Bauxite
 - Bushveld igneous complex
- Associated environmental degradation influenced by speciation, mobility and chemical fate of deleterious elements released during mining.



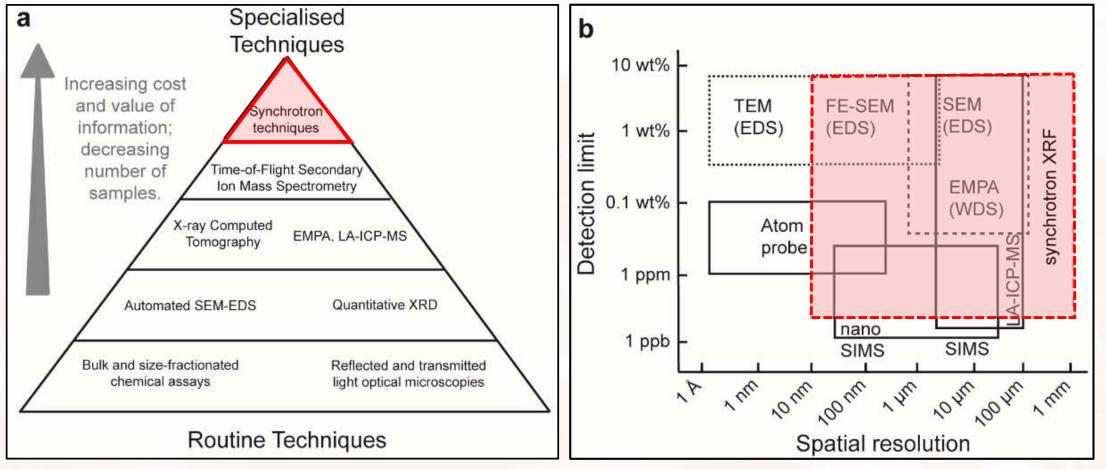
Platinum Palladium Chromium Vanadium Andalusite

Image from: platinum-info.weebly.com

- Africa is blessed with a rich mineral endowment.
- Examples of great mineral fields include:
 - Lake Victoria, West African, and Witwatersrand gold fields
 - Central African Copper Belt
 - Karoo-aged coal fields
 - Kalahari Manganese Fields
 - Moroccan sedimentary phosphate
 - Southern African diamond fields
 - West African Bauxite
 - Bushveld igneous complex
- Associated environmental degradation influenced by speciation, mobility and chemical fate of deleterious elements released during mining.



Platinum Palladium Chromium Vanadium Andalusite


Image from: platinum-info.weebly.com

How can we study these mineral endowments?

Figures from von der Heyden et al. (2020), originally adapted respectively from Becker et al. (2016), and Reich et al. (2017) and Stromberg et al. (2019).

How can we study these mineral endowments?

Figures from von der Heyden et al. (2020), originally adapted respectively from Becker et al (2016), and Reich et al. (2017) and Stromberg et al. (2019).

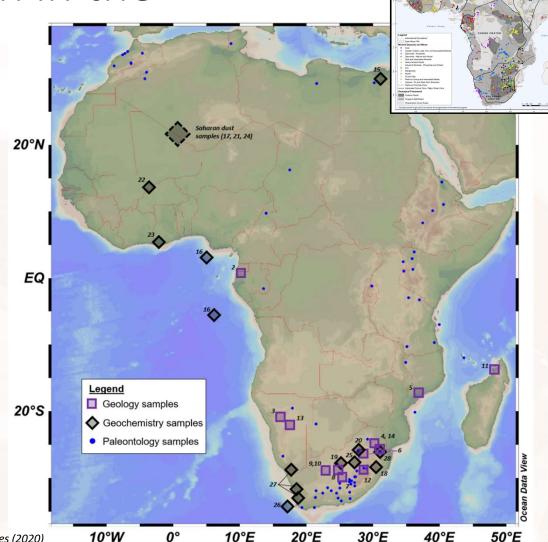
But what about impacts on the environment?

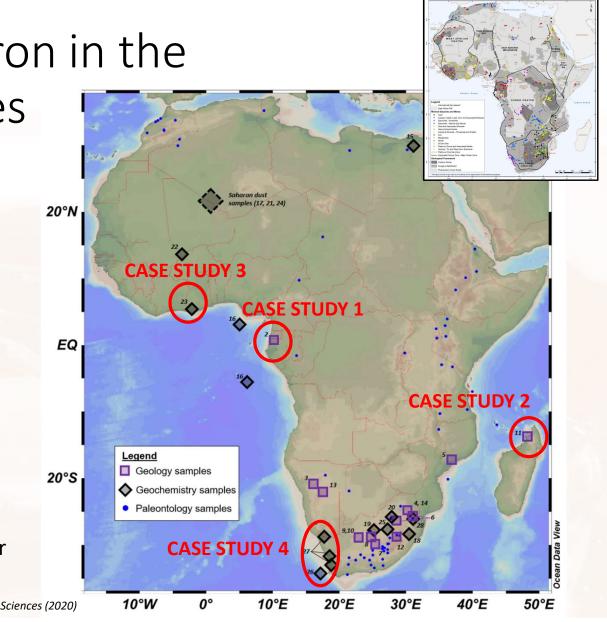
 Inasmuch as legislature serves to protect the natural environment, it does not guarantee that spills, leakages from tailings facilities and other forms of emissions will not take place.

Niger delta oil spills

 Strong need to understand the fate and degradation products associated with addition of deleterious moieties into the natural environment.

> Merriespruit tailings dam disaster (1994)

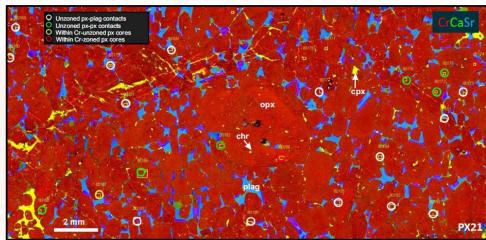

Image from: dw.com

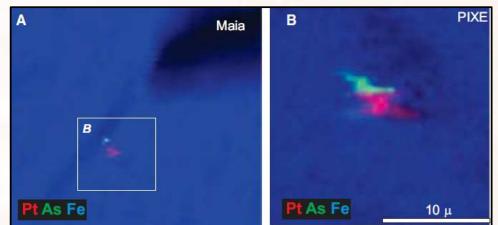

Image from: floodlist.com

Past use of synchrotron in the African earth sciences

	Study	Sample location	Technique	Beamline (Facility)	Key findings
Geol	ogical Sciences:	1.1			
1.	Acres et al. (2010)	Gauteng, South Africa	eXPS	14ID (AS)	Effect of bornite on oxidation and leaching of chalcopyrite
2.	Barnes et al.	Monte de Cristal igneous complex	eXRF mapping	XFM beamline (AS)	High Pt concentrations associated with As- and Cu-Ni sulphides and
	(2016)	(Gabon)			forme during Pt eaturation during magmatic crystallization.
S.	Buhn et al. (1999)	Kalkfeld carbonatite complex	aXRF	Beamline L	Chemistry of REE-carbonate burbankite crystals hosted in carbonatite
		(Namibia)		(HASYLAB)	fluid inclusions.
4.	Darin et al. (2016)	UG1 chromitite (South Africa)	aXRF	Elemental Analysis	Scanning of 20 trace elements' distribution in a layered sequence, with
				station (SSTRC)	special emphasis on POB.
5.	Pigueiredo et al.	Licungo pegmatite (Mosambique)	Fe K-edge	ID21 (ESRF)	Pe in octahedral Al sites possibly gives rise to blue colouration in beryla
	(2008)		XANES		
6.	Gauert et al.	Witwatergrand and Barberton	XRF	BAMLine (BESSY-	Inter-calibration for trace element fingerprinting in gold (aXRF, EMPA,
	(2015)	gold (South Africa)		ID	LA-ICP-MS).
7.	Quilhaumou et al.	Jagerafontein kimberlite (South	FTIR	MIRAGE beamline	Chemical evaluation of µm-scale melt inclusions from kimberlite garnets
	(2005)	Africa)	S. 138	(LURE)	reveals a complex ascent history for 'ultra-deep' kimberlite material.
B	Hanger et al.	Wesselton kimberlite (South	Fe K-edge	XFM beamline (AS)	Re2+/SPe ratios used to evaluate oxidation conditions during kimberlite
	(2015)	Africa)	XANES	AT AT DEMILIARE (110)	metanomation.
0	Johnson et al.	Kalahari Mn Pielda	Mn K-edge	Beamlines 4-1 and	Mn redox chemistry indicates Mn oxidation in the absence of O2 (i.e.,
	(2013)	Natarial'i Will Fields	Mn R-edge XAS	Deamlines +-1 and 10-2 (SSRL)	Mn redox chemistry indicates Mn oxidation in the absence of O ₂ (i.e., prior to the great oxygenation event).
10.	Johnson et al.	Kalahari Mn Pields (South Africa)	Mn K-edge	Beamlines 2-3 and	Mn redox chemistry shows a change in the primary mineralogy between
.0.	(2016)	Analahari nin Pielus (south Alrica)	Mn R-edge XAS	10-2 (SSRL)	Mn redox chemistry shows a change in the primary mineralogy between ancient- and more modern sedimentary Mn depositz.
11.	Ram et al. (2019)	Amparibitika intrusion	aXRF; Ce L-	XPM beamline (AS)	Diverse Ce chemical speciation in ion adsorption clays (associated with
		(Madagascar)	edge XAS		Zr, with clay minerals as Ce ³⁺ , and with Fe/Mn oxides as Ce ⁴⁺).
					Implications for LREE cycling in surficial deposits.
12.	Song et al. (2001)	Lecotho Highlands (Lecotho)	aXCT	X27C (NSLS)	Quantitative characterization of vesicle morphology provides insight
					into magmatic processes (e.g., volatile content, lava flow, etc.).
13.	Sommer et al.	Robert Victor kimberlite (South	aFTIR	(ANEA)	Detection of C:O:H volatiles in defect sites in gamets suggest
	(2014)	Africa)			microdiamond growth in eclogites.
14.	Takahashi et al.	Onganja mine (Namibia)	Re and Os L-	BL12-C (PF);	Determination of Re and radiogenic Or local coordination environments
	(2007)		edge XAS	BL37XU (SPring-S)	in molybdenite mineral structure. Difference in relative diffusion rates
					has implications for Re-Os geochronology.
15.	Vekaler et al.	UG2 chromitite (South Africa)	aXRF	Elemental Analysis	Variable trace element distributions in chromitite seams interpreted to
	(2018)			station (SSTRC)	reflect permeability and element diffusivity in crystallising matic melts.
Envi	ronmental Geochemist	ry Sciences:			
-	ronmental Geochemist		0205	THOLE	
-	Abotied et al.	ry Sciences: Giza (Egypt)	SXRF	FLUO beamline,	Elemental analysis of urban serosols
16.	Aboxied et al. (2015)	Giza (Egypt)		(KIT)	
16.	Abozied et al. (2015) Bourry et al.		SXRP SXRD		Small concentrations of $\rm H_2S$ and $\rm CO_2$ affect the type 1 $\rm CH_4$ clathrate
16.	Abosied et al. (2015) Bourry et al. (2007)	Gina (Egypt) Congo-Angola basin	SXRD	(KIT) ID31 (ESRF)	Small concentrations of $\rm H_2S$ and $\rm CO_2$ affect the type 1 $\rm CH_4$ clathrate cubic lattice structure.
16. 17. 18.	Abotied et al. (2015) Bourry et al. (2007) Doherty (2012)	Giza (Egypt) Congo-Angola basin Weat Africa	SXRD SXRD, sXRF	(RIT) ID31 (ESRF) X26 (NSLS)	Small concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental map, mineralogy
16. 17. 18. 19.	Abotied et al. (2015) Bourry et al. (2007) Doherty (2012) Eascott (2010)	Giza (Egypt) Congo-Angola basin West Africa KwaZulu Natal (South Africa)	SXRD SXRD, sXRP SXRD, sXRP	(R(T) ID31 (ESRF) X26 (NSLS) X26A (NSLS)	Small concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental map, mineralogy Paint samples on artifacts
16. 17. 18. 19.	Abotied et al. (2015) Bourry et al. (2007) Doherty (2012) Eaccott (2010) Ereglu et al.	Giza (Egypt) Congo-Angola basin West Africa KwaZulu Natal (South Africa) Neoarchean Campbellirand-	SXRD SXRD, sXRF	(RIT) ID31 (ESRF) X26 (NSLS)	Small concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental map, mineralogy
16. 17. 18. 19.	Abotied et al. (2015) Bourry et al. (2007) Doherty (2012) Eascott (2010)	Giza (Egypt) Congo-Angola basin West Africa KwaZulu Natal (South Africa) Neoarchean Campbellrand- Malmani carbonate platform	SXRD SXRD, sXRP SXRD, sXRP	(R(T) ID31 (ESRF) X26 (NSLS) X26A (NSLS)	Small concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental map, mineralogy Paint samples on artifacts
16. 17. 18. 19.	Abotied et al. (2015) Bourry et al. (2007) Doherry (2012) Earcott (2010) Ereglu et al. (2018)	Giza (Egypt) Congo-Angola basin West Africa KwaZulu Natal (South Africa) Neoarchean Campbellirand-	SXRD SXRD, sXRP SXRD, sXRP	(R(T) ID31 (ESRF) X26 (NSLS) X26A (NSLS)	ümali concentrations of H ₂ O and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental may, mineralogy Paint samples on artifacti Pe speciation in carbonate rich shelf sediments
16. 17. 18. 19. 20.	Abotied et al. (2015) Bourry et al. (2007) Doherty (2012) Eascott (2010) Eroglu et al. (2018) Herries et al.	Giza (Egypt) Congo-Angola basin West Africa KwaZulu Natal (South Africa) Neoarchean Campbellrand- Malmani carbonate platform	SXRD SXRD, sXRP SXRD, sXRP	(R(T) ID31 (ESRF) X26 (NSLS) X26A (NSLS)	Small concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental map, mineralogy Paint samples on artifacts
16. 17. 18. 19. 20. 21.	Abocied et al. (2015) Bourry et al. (2007) Doherty (2012) Eacott (2010) Eroglu et al. (2013) Herries et al. (2014)	Gisa (Egypt) Congo-Angola basin West Africa KwaZuluu Natal (Gouth Africa) Neoarcheas Campbellrand- Malmani carbonate platform (South Africa) Haasgat (South Africa)	SXRD SXRD, sXRP SXRD, sXRP XANES SXRP	(RT) ID31 (ESRP) X26 (NSLS) X26A (NSLS) ID24 (ESRP) (AS)	Umail concentrations of H ₂ O and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Blenestail maps, minesalogy Paint samples on artifacts Pe speciation in carbonate rich shelf addiments Elemental maps of Karst samples
16. 17. 18. 19. 20. 21.	Abotied et al. (2015) Bourry et al. (2007) Doherty (2012) Eascott (2010) Eroglu et al. (2018) Herries et al.	Giza (Egypt) Congo-Angola basin West Africa KwaZulu Natal (South Africa) Nearchean Campbellrand- Malmani carbonate platform (South Africa)	SXRD SXRD, #XRP SXRD, #XRP XANES	(KIT) ID31 (ESRF) X26 (NSLS) X26A (NSLS) ID24 (ESRF)	ümali concentrations of H ₂ O and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental may, mineralogy Paint samples on artifacti Pe speciation in carbonate rich shelf sediments
16. 17. 18. 19. 20. 21. 22.	Abocied et al. (2015) Bourry et al. (2007) Doherty (2012) Eacott (2010) Eroglu et al. (2013) Herries et al. (2014)	Gisa (Egypt) Congo-Angola basin West Africa KwaZuluu Natal (Gouth Africa) Neoarcheas Campbellrand- Malmani carbonate platform (South Africa) Haasgat (South Africa)	SXRD SXRD, sXRP SXRD, sXRP XANES SXRP	(RT) ID31 (ESRP) X26 (NSLS) X26A (NSLS) ID24 (ESRP) (AS)	Umail concentrations of H ₂ O and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Blenestail maps, minesalogy Paint samples on artifacts Pe speciation in carbonate rich shelf addiments Elemental maps of Karst samples
16. 17. 18. 19. 20. 21. 22.	Abocied et al. (2015) Bourry et al. (2007) Doherty (2012) Eascott (2010) Eroglu et al. (2018) Herrise et al. (2014) Longo (2016)	Gica (Egypt) Congo-Angola basin Weet Africa KwaZulu Natal (Gouth Africa) Naoarchean Campbellrand- Malmani carbonate platform (Gouth Africa) Sahara Desert	SXRD SXRD, aXRP SXRD, aXRP XANES SXRF XANES	(KIT) ID31 (ESRF) X26 (NSL6) X26A (NSL6) ID24 (ESRF) (AS) 2ID-D (APS)	Small concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental map, mineralogy Paint sample on availants Pe speciation in carbonate rich shelf sediments Pe speciation in carbonate such shelf sediments Elemental maps of Kavet samples Pe oxidation state and structural arrangement of atoms
16. 17. 18. 19. 20. 21. 22. 23.	Aboxied et al. (2015) Bourry et al. (2007) Doherty (2012) Eacost (2010) Excglu et al. (2016) Herrice et al. (2014) Longo (2016) Marol et al. (2007)	Oica (Egypt) Congo-Angola basin Weet Africa KwaZulu Natal (South Africa) Neoarcheas Campbellrand- Malmani carbonate platform (South Africa) Gouth Africa) Sahara Desert Mali	SXRD SXRD, sXRP SXRD, sXRP XANES SXRF XANES SFTIR, sXRP	(RT) ID31 (ESRP) X26 (NSL6) ID24 (ESRP) (AS) 2ID-D (AP6) ID21 (ESRP)	Small concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Beneratial map, mineralogy Performance of the structure of the structure of the Performance of Karst samples Pe oscilation state and structural arrangement of atoms Vibration bands, Elemental maps
16. 17. 18. 19. 20. 21. 22. 23.	Abocied et al. (2015) Bourry et al. (2007) Doherty (2012) Bascott (2010) Ercoglu et al. (2013) Herries et al. (2014) Longo (2016) Marel et al.	Gica (Egypt) Congo-Angola basin Weet Africa KwaZulu Natal (Gouth Africa) Naoarchean Campbellrand- Malmani carbonate platform (Gouth Africa) Sahara Desert	SXRD SXRD, aXRP SXRD, aXRP XANES SXRF XANES	(KIT) ID31 (ESRF) X26 (NSL6) X26A (NSL6) ID24 (ESRF) (AS) 2ID-D (APS)	Small concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental map, mineralogy Paint sample on availants Pe speciation in carbonate rich shelf sediments Pe speciation in carbonate such shelf sediments Elemental maps of Kavet samples Pe oxidation state and structural arrangement of atoms
16. 17. 19. 20. 21. 22. 23. 24.	Abocied et al. (2015) Bourry et al. (2007) Doherty (2012) Eascott (2010) Erogiu et al. (2018) Herries et al. (2014) Longo (2016) Masel et al. (2007) Menah et al.	Gisa (Egypt) Congo-Angola basin West Africa KwaZulu Natal (Gouth Africa) Neoarcheas Campbellrand- Malmani carbonate platform (Gouth Africa) Haagat (Gouth Africa) Gahara Desert Mali Cold mine in western region of	SXRD SXRD, sXRP SXRD, sXRP XANES SXRF XANES SFTIR, sXRP	(RT) ID51 (ESRP) X26 (NSL6) ID24 (ESRP) (AS) 2ID-D (AP6) ID21 (ESRP)	Gmail concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental map, mineralogy Performance of the structure of the selfments Performance of Karst samples Pe oscilation state and structural arrangement of atoms Vibration hands, Elemental maps As K-edge for As speciation in coll samples
16. 17. 19. 20. 21. 22. 23. 24.	Abotied et al. (2015) Bourry et al. (2007) Deherty (2012) Encott (2010) Encott (2010) Herrise et al. (2014) Longe (2016) Massi et al. (2007) Massi et al. (2020) Petroselli et al.	Oica (Egypt) Congo-Angola basin Weet Africa KwaZulu Natal (South Africa) Neoarcheas Campbellrand- Malmani carbonate platform (South Africa) Sahara Decert Mali Oold mine in western region of Ohana	SXRD SXRD, sXRP SXRD, sXRP XANES SXRF XANES SPTIR, sXRP XANES XANES	(KIT) IDS1 (ESRP) X264 (NSL6) ID24 (ESRP) (A5) 2ID-D (AP5) ID21 (ESRP) TLS 07A (NSRRC)	Small concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Beneratal map, mineralogy Performance of the structure of the solution of the solution Performance of Karst samples Pe oscilation state and structural arrangement of atoms Vibration bands, Elemental maps
16. 17. 18. 19. 20. 21. 23. 24. 25.	Abotid et al. (2015) Bourry et al. (2007) Doherry (2012) Exegue et al. (2014) Longe (2016) Massi et al. (2014) Longe (2016) Massi et al. (2007) Menash et al. (2020)	Oica (Egypt) Congo-Angola basin West Africa KwaZulu Natal (South Africa) Neoarchean Campbellrand- Malmani carbonase platform (South Africa) Haasgat (South Africa) Sahara Desert Mali Oold mine in western region of Ohana Sahara Desert	SXRD SXRD, ±XRP SXRD, ±XRP XANES SXRF XANES SFTIR, ±XRP XANES XANES XANES, EXAPS	(RT) ID31 (ESRF) X26 (NSLD) X264 (NSLD) ID24 (ESRF) (AS) 2ID-D (APS) ID21 (ESRF) TLE 07A (NERRC) EM06 (ESRF)	Gmail concentrations of H ₂ S and GO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Benesatial mays, mineralogy Paint samples on artifacts Pe speciation is carbonate sich shelf sediments Elemental maps of Karst samples Pe oxidation state and structural arrangement of atoms Vibration bands, Elemental maps As K-edge for As speciation in soil samples Pe K-edge, Pe coordination structure
16. 17. 18. 19. 20. 21. 23. 24. 25.	Aboxied et al. (2015) Bourry et al. (2007) Encoder (2012) Encoder (2010) Herrice et al. (2014) Massil et al. (2007) Massil et al. (2007) Petroselli et al. (2020) Petroselli et al. (2019) Encoder et al.	Oica (Egypt) Congo-Angola basin Weet Africa KwaZulu Natal (South Africa) Neoarcheas Campbellrand- Malmani carbonate platform (South Africa) Sahara Decert Mali Oold mine in western region of Ohana	SXRD SXRD, sXRP SXRD, sXRP XANES SXRF XANES SPTIR, sXRP XANES XANES	(KIT) IDS1 (ESRP) X264 (NSL6) ID24 (ESRP) (A5) 2ID-D (AP5) ID21 (ESRP) TLS 07A (NSRRC)	Gmail concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Bienestial map, mineralogy Performance of the structure of the structure of the structure Performance of Karst samples Pe oscilation state and structural arrangement of atoms Vibration bands, Elemental maps As K-edge for As speciation in coll samples
16. 17. 18. 19. 20. 21. 23. 24. 25. 26.	Aboried et al. (2015) Bourry et al. (2007) Doherry (2012) Eacout (2010) Ecopia et al. (2014) Longe (2016) Manal, et al. (2007) Menanh, et al. (2020) Perrocall et al. (2020) Demonent al., (2005), 2009	Oica (Egypt) Congo-Angola basin West Africa KwaZulun Natai (South Africa) Neoarchean Campbellrand- Malmani carbonate platform (South Africa) Haasgat (South Africa) Sahara Desert Mali Gold mine in western region of Ohana Sahara Desert Free State Province (South Africa)	SXRD SXRD, =XRP SXRD, =XRP XANES SXRF XANES SYTIR, =XRP XANES XANES, EXAPS XANES, EXAPS XANES	(NT) ID31 (ESP) X26 (NEL2) X26 (NEL2) ID24 (ESP) (AS) 2ID-D (APG) ID21 (ESP) TL2 07A (NSERC) BM00 (ESP) X19A (NL2)	Gmail concentrations of H ₂ S and GO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Beanearial mays mineralogy Paint samples on artifacts Pe speciation is carbonate rich shelf ardiments Elemental maps of Karst samples Pe oscilation state and structural arrangement of atoms Vibration bands, Elemental maps As K-edge for As speciation in soil samples Pe K-edge, Pe coordination structure & K-edge for S speciation in arable soils
16. 17. 18. 19. 20. 21. 23. 24. 25. 26.	Aboxied et al. (2015) Bourry et al. (2007) Exeguit et al. (2014) Herries et al. (2014) Herries et al. (2014) Massil et al. (2007) Massil et al. (2007) Petrosell et al. (2019) Ecolomon et al., (2008), 2009 von det Heyden	Gisa (Egypt) Congo-Angola basin West Africa KwaZuluu Natal (Gouth Africa) Neoarcheas Campbellrand- Malmani carbonate platform (Gouth Africa) Bahara Desert Mali Oold mine in western region of Ghana Sahara Desert Free State Province (South Africa) Cape Basin (South Africa) and	SXRD SXRD, sXRP SXRD, sXRP XANES SXRF XANES SFTIR, sXRF XANES XANES SXANES STXM, Fe L-	(RT) ID31 (ESRF) X26 (NSLD) X264 (NSLD) ID24 (ESRF) (AS) 2ID-D (APS) ID21 (ESRF) TLE 07A (NERRC) EM06 (ESRF)	Email concentrations of H ₂ S and CO ₂ affect the type 1 CH, clathrate cubic lattice structure. Elemental maps immenology Paint tamples on artifacts Pe speciation in carbonate rich chelf sediments Elemental maps of Karst samples Pe oxidation state and structural arrangement of atoms Vibration bands, Elemental maps As K-edge for As speciation in soil samples Pe K-edge, Pe coordination structure 2 K-edge of S speciation in arable soils Determination of valence and local coordination environment of Pe in
16. 17. 18. 19. 20. 21. 23. 24. 25. 26.	Aboried et al. (2015) Bourry et al. (2007) Doherry (2012) Eacout (2010) Ecopia et al. (2014) Longe (2016) Manal, et al. (2007) Menanh, et al. (2020) Perrocall et al. (2020) Demonent al., (2005), 2009	Oica (Egypt) Congo-Angola basin West Africa KwaZulun Natai (South Africa) Neoarchean Campbellrand- Malmani carbonate platform (South Africa) Haasgat (South Africa) Sahara Desert Mali Gold mine in western region of Ohana Sahara Desert Free State Province (South Africa)	SXRD SXRD, =XRP SXRD, =XRP XANES SXRF XANES SYTIR, =XRP XANES XANES, EXAPS XANES, EXAPS XANES	(NT) ID31 (ESP) X26 (NEL2) X26 (NEL2) ID24 (ESP) (AS) 2ID-D (APG) ID21 (ESP) TL2 07A (NSERC) BM00 (ESP) X19A (NL2)	Gmail concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ disturate cubic lattice structure. Elemental maps minerology Paint samples on artifacto Pe upeciation in carbonate rich shelf aediments Elemental maps of Karst samples Pe ossilation state and structural arrangement of atoms Vibration bands, Elemental maps As K-edge for As speciation in soil samples Pe K-edge, Pe coordination structure & K-edge for S speciation in arable soils Determination of valence and local coordination environment of Pe in impreded maxime particulates and annoparticles provides insight in the
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 25. 27.	Aboxied et al. (2015) Bourry et al. (2007) Encode (2010) Encode (2010) Herrise et al. (2014) Massi et al. (2004) Massi et al. (2007) Petroselli et al. (2009) Petroselli et al. (2019) Solomon et al. (2019) et al. (2019) Ecolomon et al. (2019) Ecolomon et al. (2019) Ecolomon et al. (2019)	Gisa (Egypt) Congo-Angola basin West Africa KwaZuluu Natal (Gouth Africa) Neoarchean Campbellrand- Malimani carbonate platform (Gouth Africa) Bahara Desert Mali Oold mine in western region of Ohana Sahara Desert Free State Province (South Africa) Cape Basin (South Africa) and Southern Ocean	SXRD SXRD, =XRP SXRD, =XRP XANES SXRF XANES STIR, =XRP XANES XANES STXM, Fe L- edge XAS	(RT) ID31 (EGRF) X264 (NGL6) X264 (NGL6) ID24 (EGRF) (AS) ID24 (EGRF) TL6 07A (NGRC) BM00 (EGRF) X19A (NSL6) 11.0.2 (LBNL)	Email concentrations of H ₂ S and CO ₂ affect the type 1 CH, clathrate cubic lattice structure. Elemental maps immesslogy Paint tamples on artifacti Pe speciation in carbonate rich thelf sediments Elemental maps of Karst samples Pe oxidation state and structural arrangement of atoms Vibration bands, Elemental maps As K-edge for As speciation in soil samples Pe K-edge, Pe coordination structure E K-edge, Co Speciation in arable soils Determination of valence and local coordination environment of Pe in suppended matice particulates and annoparticles provides insights into biogeochemical orginal of the source are structure.
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 25. 26. 27.	Abozied et al. (2015) Bourry et al. (2007) Doherry (2012) Encode (2012) Encode et al. (2014) Longo (2016) Herrise et al. (2017) Messah et al. (2007) Messah et al. (2007) Personelli et al. (2008), 2009 von der Heyden	Gira (Egypt) Congo-Angola basin Weet Africa KwaZulu Natai (South Africa) Neoarchean Campbellrand- Malmani carbonate platform (South Africa) Haasgat (South Africa) Sahara Desert Mali Gald mine in western region of Ohana Sahara Desert Pree State Province (South Africa) Cape Basin (South Africa) and Southern Ocean Orange, Olifanta and Berg Rivers	CXRD CXRD, =XRP CXRD, =XRP XANES SXRF XANES STIR, =XRF XANES EXAFG XANES STXM, Fe L- edge XAS STXM, Fe L-	(NT) ID31 (ESP) X26 (NEL2) X26 (NEL2) ID24 (ESP) (AS) 2ID-D (APG) ID21 (ESP) TL2 07A (NSERC) BM00 (ESP) X19A (NL2)	Gmail concentrations of H ₂ S and CO ₂ affect the type 1 CH ₄ clathrate cubic lattice structure. Elemental maps minerology Paint samples on artifacts Pe uperiation in carbonate rich shelf sediments Elemental maps of Karst samples Pe ossidation state and structural arrangement of atoms Vibration bands, Elemental maps As K-edge for As speciation in soil samples Pe K-edge, Pe coordination structure E K-edge for S speciation in arable soils Determination of valence and local coordination environment of Pe in impended market and local coordination environment of Pe in impended market and local coordination environment of A within Petiotic biogeochemical cycling of this important bio-active trace nutrient.
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.	Aboxied et al. (2015) Bourry et al. (2007) Exeguit et al. (2017) Herrise et al. (2014) Herrise et al. (2014) Massi et al. (2007) Petrosell et al. (2020) Petrosell et al. (2019) Solomon et al. (2010) Solomon et al. (2010)	Gisa (Egyr) Goisa (Egyr) Congo-Angola basin West Africa KwaZuku Natal (Gouth Africa) Neoarcheas Campbellrand- Malinani carbonate platform (Gouth Africa) Sahara Desert Mali Oold mine in western region of Ghara Desert Free State Province (South Africa) Cape Basin (South Africa) and Southern Ocean Orange, Olifants and Berg Rivere (South Africa)	SXRD SXRD, SXRP SXRD, SXRP XANED SXRP XANED SXRP XANED XANED XANED XANED XANED XANED SXARE SXARE SXARE SXARE SXARE SXARE SXARE SXARE SXARE SXRP XANED SXRP SXRP XANED SXRP XANED SXRP XANED SXRP SXRP SXRP SXRP XANED SXRP SXRP SXRP SXRP SXRP SXRP SXRP SXRP	(KT) ID31 (EGRF) X264 (NGL6) X264 (NGL6) ID24 (EGRF) (AS) ID24 (EGRF) TL6 07A (NGRC6) BM06 (EGRF) X19A (NSL6) 11.0.2 (LBNL) 11.0.2 (LBNL)	Email concentrations of H ₂ S and CO ₂ affect the type 1 CH, elashrate cubic lattice structure. Elemental maps immesology Paint tamples on artifacts Pe speciation in carbonate rich shelf addiments Elemental maps of Karst samples Pe oxidation state and structural arrangement of atoms Vibration bands, Elemental maps As K-edge for As speciation in soil samples Pe K-edge, Pe coordination structure E K-edge, Pe coordination structure E K-edge, Co S speciation in arable soils Determination of valence and local coordination environment of Pe in supended mattice particulates and nanoparticles, provides insights into biogeochemical occultance with implications for Pe particle solubility.
Envi 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	Abozied et al. (2015) Bourry et al. (2007) Doherry (2012) Encode (2012) Encode et al. (2014) Longo (2016) Herrise et al. (2017) Messah et al. (2007) Messah et al. (2007) Personelli et al. (2008), 2009 von der Heyden	Gira (Egypt) Congo-Angola basin Weet Africa KwaZulu Natai (South Africa) Neoarchean Campbellrand- Malmani carbonate platform (South Africa) Haasgat (South Africa) Sahara Desert Mali Gald mine in western region of Ohana Sahara Desert Pree State Province (South Africa) Cape Basin (South Africa) and Southern Ocean Orange, Olifanta and Berg Rivers	CXRD CXRD, =XRP CXRD, =XRP XANES SXRF XANES STIR, =XRF XANES EXAFG XANES STXM, Fe L- edge XAS STXM, Fe L-	(RT) ID31 (EGRF) X264 (NGL6) X264 (NGL6) ID24 (EGRF) (AS) ID24 (EGRF) TL6 07A (NGRC) BM00 (EGRF) X19A (NSL6) 11.0.2 (LBNL)	Gmail concentrations of H ₂ S and CO ₂ affect the type 1 GH, clathrate cubic lattice structure. Beanestial mays, minerology Paint samples on artifacts Pe uperiation in carbonate rich shelf sediments Elemental maps of Karst samples Pe ossidation state and structural arrangement of atoms Vibration bands, Elemental maps As K-edge for As speciation in soil samples Pe K-edge, Pe coordination structure E K-edge for S speciation in arable soils Determination of valence and local coordination environment of Pe in supereded market and local coordination environment of Pe in supereded market and local coordination environment of A which Pe-fold biogeochemical cycling of this important bio-active trace nutrient.

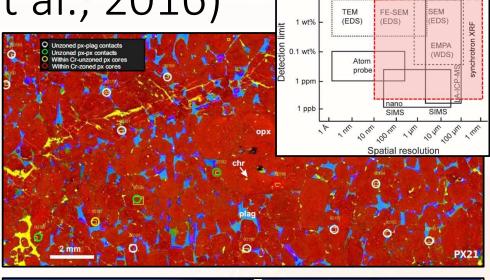
von der Heyden et al., Journal of African Earth Sciences (2020)

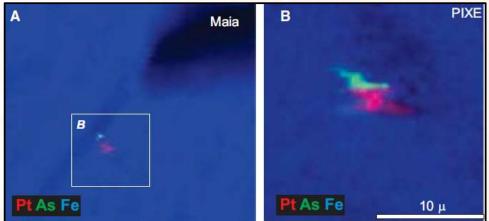



Past use of synchrotron in the African earth sciences

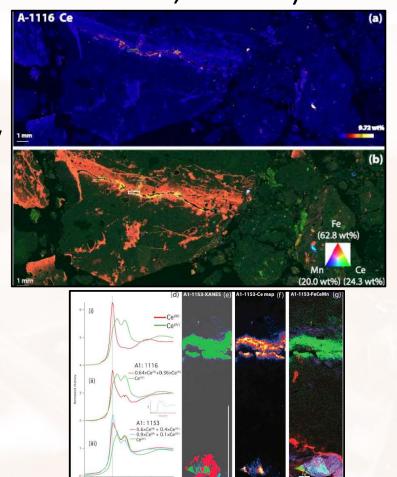
- Case study 1: Mineral resources geology
 - Platinum associations in a Cu-Ni magmatic sulphide system (Barnes et al. 2016)
- Case study 2: Mineral resources geology
 - LREE cycling in surficial deposits (Ram et al. 2019)
- Case study 3: Environmental geochemistry
 - As speciation in soils (Mensah et al. 2020)
- **Case study 4:** Environmental geochemistry
 - Fe speciation in aquatic systems (von der Heyden et al. 2012, 2014, 2018)

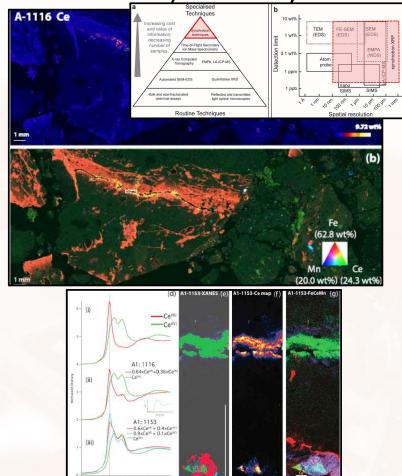
Case study 1: Platinum in the Monts de Cristal Complex, Gabon (Barnes et al., 2016)


- XFM beamline at the Australian Synchrotron (equipped with Maia detector array).
- "Pt minerals less than 5 μm in diameter can be detected in samples containing 10 s of ppb Pt, with scanning times of a few hours per standard sized thin section."
- Synchrotron used to locate grains of interest for both further synchrotron study and interrogation using µPIXE.
- Studies concludes that Pt alloys (and arsenides) can crystallize directly from magmatic systems when saturation occurs at the Pt solubility limit.

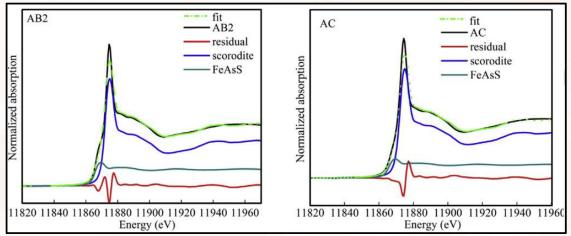


Case study 1: Platinum in the Monts de Cristal Complex, Gabon (Barnes et al., 2016)

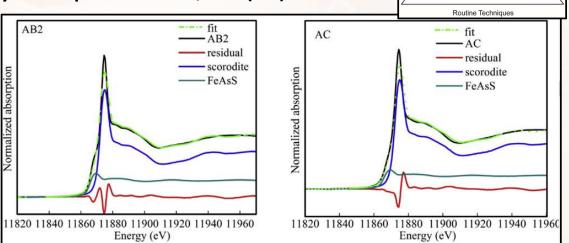

- XFM beamline at the Australian Synchrotron (equipped with Maia detector array).
- "Pt minerals less than 5 μm in diameter can be detected in samples containing 10 s of ppb Pt, with scanning times of a few hours per standard sized thin section."
- Synchrotron used to locate grains of interest for both further synchrotron study and interrogation using µPIXE.
- Studies concludes that Pt alloys (and arsenides) can crystallize directly from magmatic systems when saturation occurs at the Pt solubility limit.


Case study 2: REE characterization in ionadsorption clays in Madagascar (Ram et al., 2019)

- XFM beamline at the Australian Synchrotron (equipped with Maia detector array).
- REE distributions within a heterogeneous clay mineralogy using sXRF. Show some associations with Zr and Fe-Mn oxides.
- Additional insights related to Ce speciation obtained from XANES analysis.
- Identification of Ce(IV) has implications for beneficiation strategies, with a net result of increasing the HREE grade of the deposit.

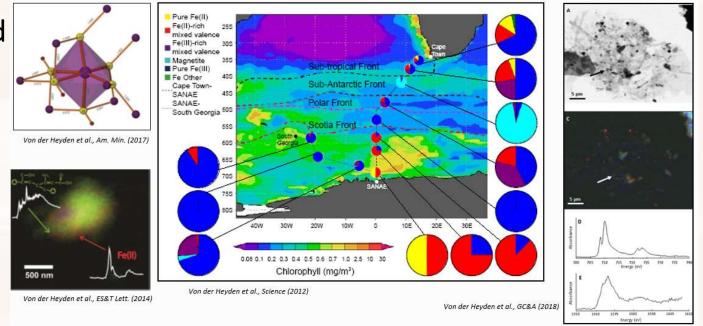

Case study 2: REE characterization in ionadsorption clays in Madagascar (Ram et al., 2019)

- XFM beamline at the Australian Synchrotron (equipped with Maia detector array).
- REE distributions within a heterogeneous clay mineralogy using sXRF. Show some associations with Zr and Fe-Mn oxides.
- Additional insights related to Ce speciation obtained from XANES analysis.
- Identification of Ce(IV) has implications for beneficiation strategies, with a net result of increasing the HREE grade of the deposit.

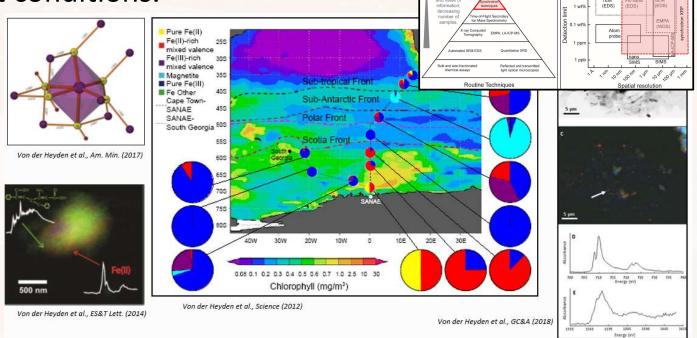

Case study 3: Arsenic speciation in tailing materials from gold mines in Ghana (Mensah et al., 2020)

- TLS 07A beamline, National Synchrotron Radiation Research
- Centre (NSRRC), Taiwan.
- Au and As are strongly associated. Au mining can be a notable point source of As release into the environment.
- As toxicity is strongly controlled by its speciation, As(III) more toxic than As(V).
- Scorodite and arsenopyrite are the two major forms of As in the spoils, typically associated with fine fractions.

Case study 3: Arsenic speciation in tailing materials from gold mines in Ghana (Mensah et al., 2020)


- TLS 07A beamline, National Synchrotron Radiation Research
- Centre (NSRRC), Taiwan.
- Au and As are strongly associated. Au mining can be a notable p source of As release into the environment.
- As toxicity is strongly controlled by its speciation, As(III) more to than As(V).
- Scorodite and arsenopyrite are the two major forms of As in the spoils, typically associated with fine fractions.

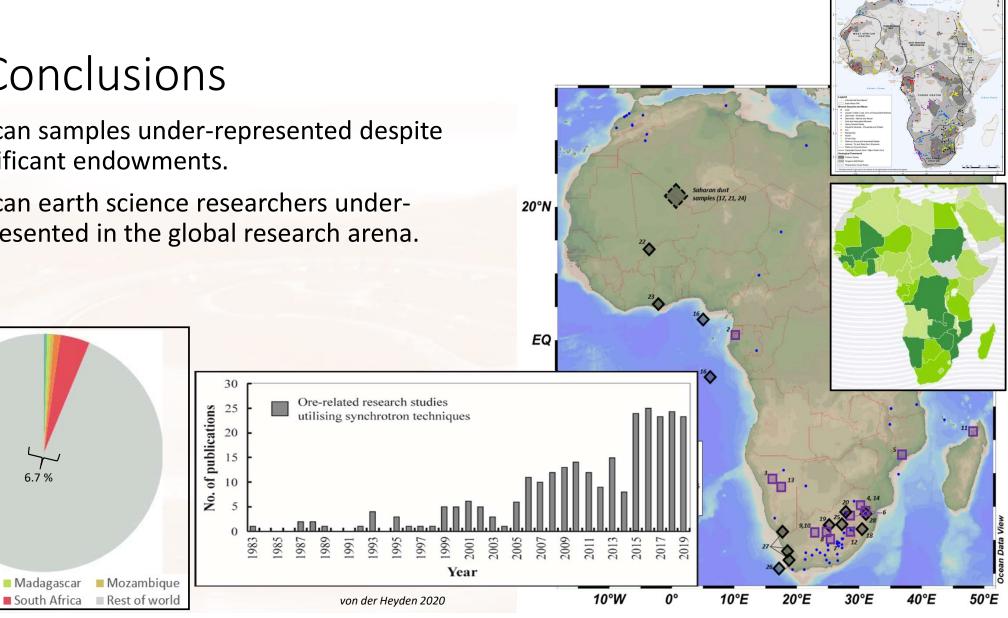
Reflected and tr


Case study 4: Fe speciation in aquatic particles, South Africa (von der Heyden et al.)

- Beamline 11.0.2 at the Advanced Light Source, USA.
- Soft X-ray spectroscopy allows evaluation of natural colloids and nanoparticles at ambient conditions.
- Series of studies showed differences in Fe speciation, associations between Fe(II) and organic matter, and variable levels of Al substitution.

Case study 4: Fe speciation in aquatic particles, South Africa (von der Heyden et al.)

- Beamline 11.0.2 at the Advanced Light Source, USA.
- Soft X-ray spectroscopy allows evaluation of natural colloids and nanoparticles at ambient conditions.
- Series of studies showed differences in Fe speciation, associations between Fe(II) and organic matter, and variable levels of Al substitution.


Conclusions

6.7 %

Gabon

Namibia

- African samples under-represented despite significant endowments.
- African earth science researchers underrepresented in the global research arena.

Conclusions

6.7 %

Gabon

Namibia

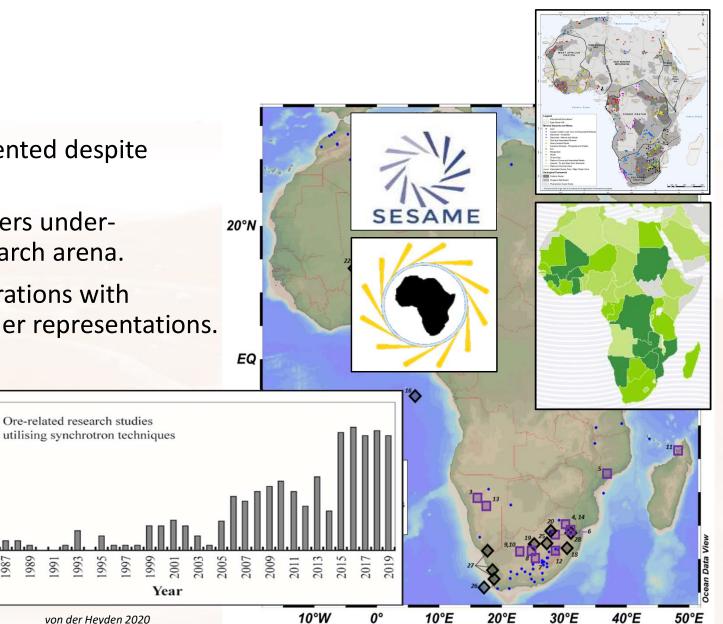
Madagascar Mozambigue

South Africa Rest of world

- African samples under-represented despite significant endowments.
- African earth science researchers underrepresented in the global research arena.
- African light source or collaborations with partners to mitigate these under representations.

30

25


20 15

10 5 0

983

991

No. of publications

SESAME - AFRICA ONLINE WORKSHOP

Acknowledgements

- You as the audience.
- The African Light Source Conference- and Steering committees.
- Co-authors (A. Roychoudhury; J.Benoit; V. Fernandez) of the Journal of Africa Earth Sciences publication.
- African Strategy steering committee.
- Funding agencies including NRF-DSI CIMERA.

DST-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis

Background photo credit: www.esrf.eu

SESAME - AFRICA ONLINE WORKSHOP

Acknowledgements

- You as the audience.
- The African Light Source Conference- and Steering committees.
- Co-authors (A. Roychoudhury; J.Benoit; V. Fernandez) of the Journal of Africa Earth Sciences publication.
- African Strategy steering committee.
- Funding agencies including NRF-DSI CIMERA.

Questions??

DST-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis

Background photo credit: www.esrf.eu

Ongoing interventions towards advancing earth sciences interactions

- African Light Source (AfLS) conceptual design report
 - Letters of interest can be emailed to <u>bvon@sun.ac.za</u>
- African Strategy for Fundamental and Applied Physics (ASFAP): Earth Sciences working group
 - Letters of interest can be emailed to <u>ASFAP-EarthScience@cern.ch</u>

What are the Earth Sciences?

- Broad umbrella term: necessarily an interdisciplinary and 'systems science' field of study.
- 'Multi-spheric' comprising lithosphere, hydrosphere, biosphere, cryosphere, troposphere, stratosphere, and all the way out to the exosphere.
- Selected sub-disciplines include:
 - geology, meteorology, climatology, oceanography, environmental science, hydrogeology, astronomy, tectonics, seismology, mineralogy and petrology, geochronology, ecotoxicology, among others...

Image taken from: https://science.nasa.gov/earth-science

What are the Earth Sciences?

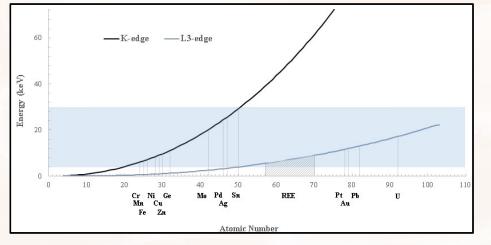
- Broad umbrella term: necessarily an interdisciplinary and 'systems science' field of study.
- 'Multi-spheric' comprising lithosphere, hydrosphere, biosphere, cryosphere, troposphere, stratosphere, and all the way out to the exosphere.
- Selected sub-disciplines include:
 - geology, meteorology, climatology, oceanography, environmental science, hydrogeology, astronomy, tectonics, seismology, mineralogy and petrology, geochronology, ecotoxicology, among others...

Image taken from: https://science.nasa.gov/earth-science

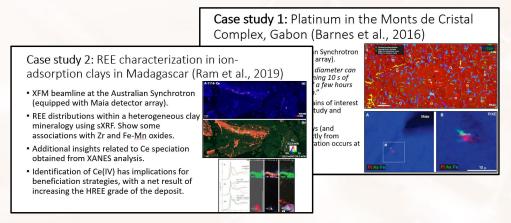
Acknowledgements

- The African Light Source Conference- and Steering committees.
- Co-authors (A. Roychoudhury; J.Benoit; V. Fernandez) of the Journal of Africa Earth Sciences publication.
- African Strategy steering committee.
- Funding agencies including NRF-DSI CIMERA.

Acknowledgements

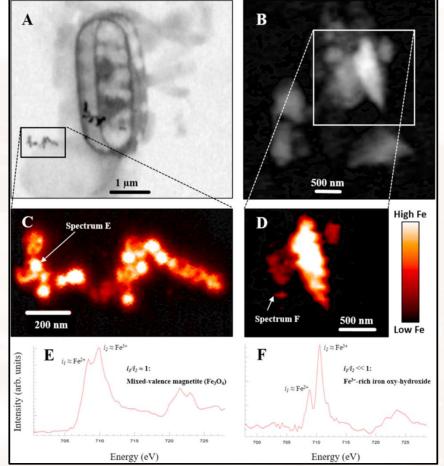

- The African Light Source Conference- and Steering committees.
- Co-authors (A. Roychoudhury; J.Benoit; V. Fernandez) of the Journal of Africa Earth Sciences publication.
- African Strategy steering committee.
- Funding agencies including NRF-DSI CIMERA.

Questions??


Overview of the synchrotron needs of the African Earth Sciences community

Geological sciences

- Hard X-ray beamline
- Should access an energy of at least 40 keV to evaluate important metal K-edges.
- Tuneable spot size.
- Possibly a specialized end-station configuration.



- Multi-detector array
- An array of 384 silicon-based detector elements which enables fast (0.2 ms per pixel) elemental mapping at spatial resolutions as small as 2 μm over relatively large sample areas (e.g., 7 cm²).
- Preferably accessing X-ray energies up to 40 keV with spot size as small as 2 μm.

Overview of the synchrotron needs of the African Earth Sciences community

- Environmental geochemistry beamline
 - Soft X-ray spectroscopy
 - Environmental samples are commonly composed of low molecular weight elements, contain biological fractions or are analysed as thin films that are prone to beam damage when exposed to high energy beams.
 - Soft X-ray beamline (50 eV–2000 eV) and should have both spectroscopic and microscopic capabilities (e.g., STXM).
 - Spectral resolution of at least 0.2 eV, and spatial resolution of 10 nm or better.
 - Operate under atmospheric and high vacuum conditions.
 - Time resolved measurements

von der Heyden et al., 2019, 2020