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Introduction

Strongly coupled physics is notoriously difficult to access, especially
analytically.

We do not have small parameters in which to do a perturbative
expansion. Our most basic notions of field theory are of a perturbative
nature.

Make use of symmetries, look at special limits/subsectors where things
simplify.

Examples:

» large-N limit, 't Hooft limit
* € expansion

* supersymmetric sectors

* large spin



Introduction

Here: study theories with a global symmetry group.
Hilbert space of the theory can be decomposed into sectors of fixed

charge Q.
Study subsectors with large charge Q.

Large charge Q becomes controlling parameter in a perturbative
expansion!

Effective theory at large Q:

vacuum + Goldstone + |/Q-suppressed corrections



Introduction

Conformal field theories (CFTs) play an important role in theoretical

physics: A\

: ﬁx.e.d points in RG flows \/\( //ﬁ\\\\%\w\(\»&}

» critical phenomena pra /))j:/é\\

+ quantum gravity (via AdS/CFT N
: raviy | N

» string theory (WS theory)

But: CFTs do not have any intrinsic scales, most have by naturalness
couplings of O(1).

Possibilities: analytic (2d), conformal bootstrap (d>2), lattice calculations,
non-perturbative methods...

Prime candidate for the large-charge approach.
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Introduction

) Q

works especially well for strongly coupled systems!
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Introduction

Is the microscopic theory
accessible!?

V N‘
weakly coupled
large-N limit strongly coupled
£ expansion 4
>y work @large Q
large Q + large N 4
large Q + € expansion large-Q EFT,
large Q + susy expansion in |/Q

b

go beyond perturbation theory in 1/Q, calculate
non-perturbative (exponential) corrections!
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Introduction

The seem to be 2 main categories of behavior for systems at large
quantum number:

Superfluid

isolated vacuum

Wilson-Fisher CFT
NRCFT (unitary

EFT of the moduli
space

moduli space of vacua

free boson
N=2 theories in 4d

Fermi gas)

N=2 SCFT in 3d
asymptotically safe
model in 4d

NJL model




Introduction

Example: Scalar field theories in 2<D<4 have a strongly-coupled
interacting fixed point, thngViIson-Fisher FP.

C CFT, strongly coupled

superfluid at large Q

U
2N

Sl =Y [ dtd® [ (3},60) (@}.00) + r(8100) + 5x- (6]60)7]

For r=R/8, this flows to the WF fixed pt in the IR, v —
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The O(2) model

Simplest example: O(2) model in (2+1) dimensions

Luy = 0,0%OMp— g° (¢ )"
Flows to Wilson-Fisher fixed point in IR.

Assume that also the IR DOF are encoded by cplx scalar

er =aeX  Global U(l) symmetry: x — x + const.

Look at scales: put system in box (2-sphere) of scale R
Second scale given by U(1) charge Q:

,01/2 N Ql/z/R
Study the CFT at the fixed point in a sector with

| 01/ o UV scale

cut-off of effective theory
10



The O(2) model

Fixing the charge breaks symmetries:
S0(3,2) x O(2) — SO(3) x D x O(2) ~» SO(3) x D’

/

D' =D — u0O(2)

Broken U(1) - superfluid!
Dynamics is described by a single Goldstone field X:

can get this purely by
/
Lro = ks/2(9.x 0" x)*' dimensional analysis

Lowest-energy solution: homogeneous ground state

Nnon-const. vev
X = ut, <

Beyond LO: use dimensional analysis, parity and scale invariance to
determine (tree-level) operators in effective action (Lorentz scalars of

scaling dimension 3, including couplings to geometric invariants)
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The O(2) model

Use p-scaling to determine which terms are not suppressed:
Ox ~ pt% 9.9~ p /4

Result for NLSM action in D=3:
__~LO Lagrangian - curvature coupling

L = ks/o(0,x0"X)%? + k1 o R(9,,x0" )/ + O(Q™/?)

dimensionless parameters suppressed by inverse
powers of Q

Energy of classical ground state at fixed charge:

. . cannot be calculated
2 dimensionless parameters

ithin EFT!
/ \ Wi o
63/2 Q3/2 C1/2 R\/VQl/Z 4 O(Q—l/Z)

oS

dependence on manifold

Es(Q) =
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The O(2) model

Expand action around GS to second order in fields: x = pt + X

L = k3/2,u3 + kl/gR,u -+ (675)2)2 — %(V52)A<)2 - ...

Compute zeros of inverse propagator for fluctuations and get dispersion
relation:
_ 17

Wp = \ﬁ ___—dictated by conf.invariance 1/v/d

= X is indeed a “conformal” Goldstone

Are also the quantum effects controlled!?

Yes! All effects except Casimir energy of X are suppressed (negative -
scaling).

Effective theory at large Q:

vacuum + Goldstone + |/Q-suppressed corrections
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The O(2) model

We're ready to calculate observables:
CFT: conformal data (scaling dim. + 3pt coefficients)!

Use state-operator correspondence of CFT:

R R x S9-1
H . <D
D

conformal so-1--

. . ener
dimension —™/™— &Y

Scaling dimension of lowest operator of charge Q:
/energy of class. ground state
D(Q) = Ro(Eg + Ecas) = ¢3/2Q°% + ¢12Q"? — 0.0937 - + O(Q~/?)

quantum correction from Casimir energy of Goldstone

] 4.S. Hellerman, D. Orlando, S. R., M. Watanabe, arXiv:1505.01537 [hep-th]



The O(2) model

Testing our prediction:

C3/2 _
D(Q) = 5 Q% +2V7e13Q% = 0094+ 0(Q /%)
Independent calculation on the lattice:
14
12 | —
10 | . 1 Excellent
gl e | agreement!!
S}
e
6 r 1 c3/2 = 1.195(10)
4 + | 01/2 — 0075(0)
2 AE/E/E MC data -
) . . . fit —
works for small = 2 4 6 8 10
C h a r’ge . Wh)l7 7 Q D. Banerjee, Sh. Chandrasekharan, D. Orlando [hep-th/1707.00711]

Large-charge expansion works extremely well for O(2).
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Beyond O(2)
Where else can we apply the large-charge expansion!?

Obvious generalization in 3d: O(2N) vector model
non-Abelian global symmetry group: new effects

Different symmetry breaking patterns possible, inhomogeneous ground
states possible.

Homogeneous case: same form of ground state,
SO(3,2) x O(2N) — SO3) x D x U(N) — SO(3) x D" x U(N — 1)

We expect dim[U(N)/U(N-1)] = 2N-1 Goldstone d.o.f.

On top of the conformal Goldstone of O(2),a new sector with N-I non-
relativistic type |l Goldstones and N-| massive modes with m=2p

appears.
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The O(2N) vector model

Dispersion relation: @
W= + Op~°

The non-relativistic Goldstones count double.

Nielsen and Chadha; Murayama and Watanabe

Counting type | and type Il modes, indeed,
14+2(N —1) =2N — 1 =dim(U(N)/U(N — 1))

Non-relativistic Goldstones contribute to the conformal dimensions only
at higher order.

The ground-state energy is again determined by a single relativistic
Goldstone!

Same formula for scaling dimensions as for O(2):

/N-depen%jt /universal for O(2N)
D(Q) = 2 9312 4 2/ e12Q'? —0.094+ O(Q™/?).
2y ——_ verified at large N for

CP(N |) model de la Fuente

17 L. Alvarez-Gaume, O. Loukas, D. Orlando and S. R., arXiv:1610.04495 [hep-th]



The O(2N) vector model

Testing our prediction:

D(@Q) = 5 2 Q" + 2/ pQ!? 0,094+ 0(Q /%)
New lattice data for O(4) model:
12 — - . . . . |

10

63/2 — 1068(4)
01/2 — 0083(3)

D{, J)
o

o5 1 15 2 25 3 35 4 45 5
j D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. 1902.09542

Again excellent agreement with large-Q prediction!
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The large-N limit

Standard large-N methods, expand path integral around saddle point (no
EFT!)

Extra control parameter at large N: can go further!

Start in the UV with
Sl =Y [ At [g (3},00)1(9}00) + r(6]1) |

U
2N

(6]6:)*
For r=R/8, this flows to the WF fixed pt in the IR, v —

Scaling dimension for Q/N>>1:

A(Q) B 2 [ O 3/2 1 /O 1/2 - 0 —1/2 -1 0 —3/2
ON 3 (2_N> MG (ﬁ) 720 (ﬁ) 181440 (ﬁ) e

\ : , L. Alvarez-Gaume, D. Orlando, S.R. 1909.02571
same Q-éalmg as in EFT
Small charge limit, Q/N<<I: engineering dimension of ¢

Q) 2 7w N 2N
In this limit, the operator of charge 1(92 is @Y

AQ) _ 1474 Q ’O(Q>2



The large-N limit

NLO in N: reproduce dispersion relations of Goldstones.

Find coefficients of the expansion (leading order in N):

1 /2
C3/0 = =A| =
3/2 3\ N

Comparison to lattice data:
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Ci1/2 = 5\ &
Subleading coupling ¢12
0.50 7. Large-N: (1/6) N1/
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Singh, arXiv:2203.00059 [hep-lat]



Resurgence analysis

Since we can compute all the coefficients of the large-Q expansion, we
can do a resurgence analysis to relate the large and small-charge regimes.
Asymptotic series which diverges as (2L)!

We can write the transseries. Find non-perturbative corrections:

6—27rk\/Q/(2N)

Geometric interpretation: particles of
mass J propagating on the equator of
the 2-sphere.

CFT + resurgence: This picture must work for any N!

The optimal truncation is O(1/Q) terms.This explains why the
comparison to the lattice calculation works so well.

A. Dondi, I. Kalogerakis, D.Orlando, S.R, arXiv: 2102.12488 [hep-th]
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Fermions@large Q

Will large Q work for fermionic models?

Antipin, Bersini, Panopoulos;

Let’s start with the multicomponent Nambu-Jona-Lasinio (NJL) model,
also known as the chiral Gross-Neveu (GN) model in 3D:

Sen == [ @ [Gaidhba + 5 (Bua)® + (Baivsva))]
There are two conserved currents:
" =Pyt o1 =y
We can study this model at large N with standard methods.

We find that only the axial charge gives rise to a condensate at criticality.

Scaling dimension: large Q/N
A ‘/\/§ Q 3/2 1 Q 1/2

|3\/§
2

small Q/N\ 10 1 (Q)
— | — | +...

T 9N g2
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Fermions@large Q

Like for the scalar case, we get a condensate at fixed charge, but not VWF
universality class.

Can go to a different frame using the Pauli-Gursey transformation:
condensate is due to Cooper pairs!

The end result is similar in the sense that we have an EFT in terms of
Goldstones fluctuating around a condensate.
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Fermions@large Q

What happens if there is not axial charge to fix?

Study standard Gross-Neveu model:

SGN — _/dgx {@Zaiﬁwa | Q?V(&awa)ﬂ
Only one current, can fix its associated charge.

Result@leading order in N: the fixed-charge ground state is not a
condensate, but a Fermi surface.

Interaction is exponentially suppressed in N, behaves like a free fermion.
SSB is a non-perturbative effect.

2%






Summary

Concrete examples where a strongly-coupled CFT simplifies significantly
at large charge.

O(2N) model in 3d: in the limit of large U(1) charge Q, we computed the
conformal dimensions in a controlled perturbative expansion:

Excellent agreement with lattice results for O(2), O(4)

large Q and large N: path integral at saddle pt., more control than in
EFT, can calculate coefficients

can follow the flow away from conformal point, find the full effective
potential

NJL model: similar results, condensate due to Cooper pairs.

GN model at large N: condensate suppressed at large N.
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Further directions

Further study of supersymmetric models at large R-charge (higher-

Hellerman, Maeda, Orlando, Reffert, Watanabe;

dim. mOdUIi SpaceS) Argyres et al.

Loukas, Orlando, Reffert, Sarkar;
De la Fuente, Z0sso;

ConneCtion tO h0|0gl"aphy (gl”aVit)' duaIS) Giombi, Komatsu, Offertaler;

Perlmutter et al.

Operators with spin; connection to large-spin results

Cuomo, de la Fuente, Monin, Pirtskhalava, Rattazzi; Cuomo

Use/check large-charge results in conformal bootstrap

Jafferis and Zhiboedov

Further lattice simulations: inhomogeneous sector, general O(N)

Chandrasekharan et al.;
Singh

CFTS in Other dimenSionS (2’ 5, 6) Komargodski, Mezei, Pal, Raviv-Moshe;

Araujo, Celikbas, Reffert, Orlando;
Moser, Orlando, Reffert
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Further directions

Chern-Simons matter theories @large charge

Watanabe

Arias-Tamargo, Rodriguez-Gomez, Russo;

4'8 EXPanSion @Iarge Cha—rge Badel, Cuomo, Monin, Rattazzi; Watanabe;

Antipin et al.

going away from the conformal point Orlando, Reffet, Sunnino:

Orlando, Pellizzani, Reffert

non-=re I atiVi Sti C C FTS Favrod, Orlando, Reffert; Kravec, Pal;

Orlando, Pellizzani, Reffert;
Hellerman, Swanson; Pellizzani

Boundary CFTs at large Q

Cuomo, Mezei, Raviv-Moshe

Swam P I an d ) Weal( graVity CO nj eCtu re Aharony, Palti; Antipin et al.

Orlando, Palti

Study fermionic theories. Can large-charge approach be used for QCD

Komargodski, Mezei, Pal, Raviv-Moshe;

(e .g. Ia rge ba r)’O n n U m b e I") ? Antipin, Bersini, Panopoulos;

Dondi, Hellerman, Kalogerakis, Moser, Orlando, Reffert;

Gauge theories @large charge

Antipin et al.
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Thank you for your
attention!



