Ultra-relativistic nuclear collisions

From: MADAI collab.

Alexander Kalweit (CERN) EPS-HEP Hamburg, 25th August 2023

1

Introduction

- 1. What is an ultra-relativistic nuclear collision?
- 2. Where do we do ultra-relativistic nuclear collisions?
- 3. What can we learn from ultra-relativistic nuclear collisions?
 - \rightarrow For the characteristics of the quark-gluon-plasma
 - \rightarrow For the (subnucleonic) structure of nuclei
 - \rightarrow For astroparticle physics

→ Disclaimer: our field is diverse, based on many experiments and full of fascinating physics. In the following, I am only able to show a small personal selection.

What is an ultra-relativistic nuclear collision?

pp / p-Pb / Xe-Xe / Pb-Pb collisions

- The LHC can not only collide protons on protons, but also heavier ions.
- Approximately one month of running time is dedicated to heavy-ions each year.

Heavy-ions at the LHC

→ Energy per nucleon in a $^{208}_{82}$ Pb-Pb collision at the LHC (Run 3):

- pp collision energy $\sqrt{s} = 13.6 \text{ TeV}$
- beam energy in pp $E_{\text{beam}} = 6.8 \text{ TeV}$
- Beam energy per nucleon in a Pb-Pb nucleus:

 $E_{beam,PbPb} = 82/208 \cdot 6.8 = 2.68 \text{ TeV}$

- Collision energy per nucleon-nucleon pair in Pb-Pb: $\sqrt{s_{NN}} = 5.36$ TeV
- Total collision energy in Pb-Pb: $\sqrt{s} = 208 \cdot 5.36 \text{ TeV} = 1.1 \text{ PeV}$

→ What can we learn from these massive interactions?

Total number of charged hadrons in Pb-Pb collisions

→ Collisions of heavy-ions at high energy accelerators allow the creation of several tens of thousands of hadrons (1 << N << 1mol) in local thermodynamic equilibrium in the laboratory.
 → Access to multi-body phenomena in QCD (in analogy of condensed matter physics to QED).

QGP as the asymptotic state of QCD (1)

QGP as the asymptotic state of QCD (2)

QGP as the asymptotic state of QCD (3)

QGP as the asymptotic state of QCD (4)

Fireball temperature

 \rightarrow The effective photon temperature $T_{eff} = 304 \pm 41$ MeV is twice larger than the critical temperature of approx. 160 MeV.

 \rightarrow Ultra-relativistic nuclear collisions provide extreme conditions in terms of:

- Multiplicities
- Temperature
- Energy density

Temperatures in heavy-ion collisions

→ Systematic measurements of light flavor hadrons demonstrate that chemical freeze-out (hadronization) temperature saturates at:

 $T_{\rm ch} \approx 156 \;{\rm MeV} \pm 3 \;{\rm MeV} \;(\triangleq 1.8 \cdot 10^{12} \;{\rm K})$

 \rightarrow In agreement with first principle Lattice QCD calculations

[Nature 561 (2018) no.7723, 321-330] [ALICE, Nucl. Phys. A 971 (2018) 1-20]

Where do we do ultra-relativistic nuclear collisions?

Heavy-ion experiments

→ By now all major LHC experiments have a heavy-ion program: LHCb took Pb-Pb data for the first time in November 2015.

Low energy frontier: RHIC (BES), SPS → future facilities: FAIR (GSI), NICA

Lower energy heavy-ion experiments

\rightarrow Existing:

Exploring the phase diagram of QCD

- Similar to water or any other substance, also QCD has a phase diagram.
- The different facilities and experiments probe different regions of the phase diagram.

[Nature Phys. 15 (2019) 10, 1040-1045]

What can we learn from ultra-relativistic nuclear collision for the characterization of the quark-gluon-plasma?

- Spatial anisotropy of the initial state induces momentum anisotropy in the final state
- Characterised by anisotropic flow coefficients v_n
- Fluctuations in the initial state lead to non-zero values of higher harmonics if they are not damped (sensitivity to the *viscosity* of the system)

Probing the ideal liquid (2)

[J. Bernhard et al, *Nature Physics* (2019)]

[ALICE, arXiv:2211.04384]

Following the propagation of charm through the QGP

- Charm quarks are roughly 200-500 times heavier than u- or d-quarks.
- The ideal QGP probe: they are so heavy (m_c >> T) that they are produced only in the initial collisions, then their number is conserved → perfect tool to study diffusion, recombination, and energy loss for a characterization of the medium.
- Despite being so heavy, the many other light quarks give them apparently so many kicks that they participate in the medium expansion. Latest estimate on charm quark diffusion coefficient: $1.5 < 2\pi D_s T_c < 4.5$

Thermalisation of beauty?

[CMS, arXiv:2212.01636] [ALICE, arXiv:2307.14084]

→ Different behavior for the heavier beauty quarks! They seem only partially thermalized (longer relaxation time) and thus they do show less elliptic flow than charm quarks (v₂ of B mesons < v₂ of D mesons).

Future instrumentation at the LHC

- → The heavy-ion program in ATLAS, CMS, and LHCb will naturally profit from the planned Phase II upgrades of ATLAS & LHCb and the LHCb upgrade II.
- \rightarrow In addition, a dedicated heavy-ion experiment ALICE 3 is planned for installation in LS4:
- Compact low-mass all-Si tracker, excellent vertex reconstruction and PID
- First layer is envisaged to be positioned inside the beam-pipe (5mm from interaction point).

ALICE 3

Main physics goals: chiral symmetry restoration and thermal radiation, **multi-charm hadrons**, heavy-flavour transport and hadronization, exotic bound states, small systems,..

22

Quarkonia (1)

- → Charmonium: sequential suppression
 + regeneration effects
- \rightarrow Bottomonium: sequential suppression
- [Nature 448 (2007) 302-309]

Quarkonia (2)

PbPb 1.61 nb⁻¹, pp 300 pb⁻¹ (5.02 TeV) CMS |*y*| < 2.4 Cent. 0-90% Y(1S) (2015 PbPb/pp) **Y(2S)** Y(3S) 20 25 15 30 5 10 *p*_{_} (GeV/*c*) [CMS, arXiv::2303.17026v1]

→ Charmonium: sequential suppression
 + regeneration effects

 \rightarrow Bottomonium: sequential suppression \rightarrow less tightly bound states are more suppressed₂₄

Energy loss and jet quenching

- Jet and high- p_T hadron suppression observed over a wide momentum range
- Explained by energy loss of hard partons interacting with QGP medium

Jet+photon measurements

 \rightarrow Ideal probe for jet quenching measurements: Leading jet is highly energetic photon that escapes the medium without interaction.

 γ -jet, 0–10%

CMS, Phys.Rev.Lett. 121 (2018) 712301, 2018 CMS, Phys.Rev.Lett. 128 (2022) 122301, 2022 **Z-hadron**, 0-30% anti-k_T jet R = 0.3, $p_{\tau}^{\text{jet}} > 30 \text{ GeV}/c$, $|\eta^{\text{jet}}| < 1.6$ $|\Delta \varphi_{z_{-h}}| > \frac{7}{8} \pi, p_{T}^{Z} > 30 \text{ GeV}/c \otimes p_{T}^{h} > 1 \text{ GeV}/c$ $|\Delta \varphi_{v_{-iet}}| > \frac{7}{8} \pi, |\eta^{\gamma}| < 1.44, p_{\tau}^{\gamma} > 60 \text{ GeV}/c \otimes p_{\tau}^{h} > 1 \text{ GeV}/c$

What can we learn from ultra-relativistic nuclear collision for the (subnucleonic) structure of nuclei?

Nuclear PDFs with ultra-peripheral collisions

 \rightarrow Coherent J/ ψ photoproduction is probing low-x gluon PDFs in the nucleus

→ Comparison with the impulse approximation (no nuclear effects) allows for extraction of the gluon shadowing factor: $R_g \sim 0.5$ at $x \sim 10^{-5}$

Neutron skin and nuclear deformation with v_2

(a)

HC

- The collision deposits energy in • the interaction region depending on the extent of the neutron skin of the ²⁰⁸Pb nuclei.
- A larger neutron skin leads to a considerably larger total hadronic cross section, σ_{tot} , and the resulting QGP is in addition more diffuse and less elliptical.
- This allows for a determination of the neutron skin with comparable precision to alternative methods and stateof-the art calculations.

[G. Giacalone et al., arXiv:2305.00015]

What can we learn from ultra-relativistic nuclear collision for astroparticle physics?

Search for antinuclei in space

To-do list for collider based experiments:

- Understand antinuclei formation to model production in DM decays
- Understand antinuclei formation to model production in background reactions
- Understand interaction of antinuclei with matter to determine the transparency of the galaxy

31

Antinuclei measurements at the LHC

ALICE

- General purpose heavy-ion experiment
- Excellent particle identification (PID)
- ▶ pp, p-Pb and Pb-Pb at \sqrt{s} up to 13 TeV
- Production cross section for p
 , d
 , ³He
 Annihilation cross sections for p
 , d
 , ³He

LHCb and SMOG

Particle Fixed target experiment with LHCb

- Excellent particle identification (PID)
- ▶ p-He at $\sqrt{s} = 100 \text{ GeV}$
- \blacktriangleright Production cross section for \overline{p}
- Intrinsic charm (LHC Coll. PRL 122 (2019))

Antiprotons from cosmic rays and from SMOG

Where do these \overline{p} come from?

SMOG@LHCb: p+He at $\sqrt{s} = 110 \text{ GeV}$ $\rightarrow \overline{p}$ cross sections for prompt and secondaries from hyperon decays [LHCb coll. PRL 121 (2018)] [LHCb, arXiv:2205.09009]

33

Antinuclei formation and annihilation (1)

 \rightarrow Using heavy-ion collisions at the LHC as "anti-matter factory"

Production:

Antinuclei formation and annihilation (2)

 \rightarrow Using heavy-ion collisions at the LHC as "anti-matter factory"

Production:

[ALICE, Nature Phys. 19 (2023)]

Summary and Outlook

Summary and outlook

- Ultra-relativistic collisions are a unique laboratory to study QCD at extreme densities.
- A World-wide program involving many facilities and collaborations is needed to study the phase diagram of QCD in all its facets.
- Characterization of the QGP enters a quantitative era (numerical determination of transport coefficients) and will reach textbook quality in the next decade.
- Along the way, many interesting and unique insights impacting the neighboring fields of nuclear and astroparticle physics have been found.

