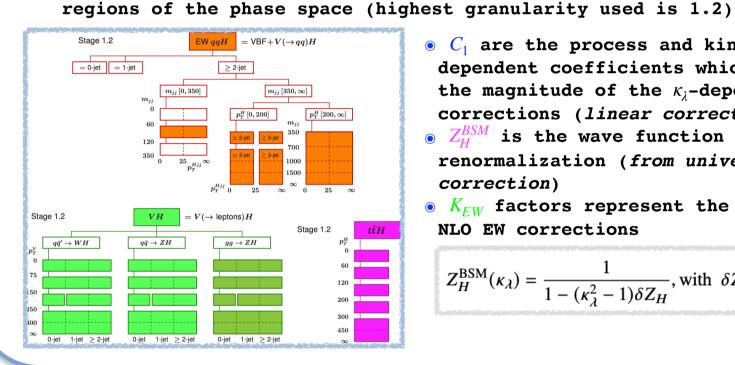

C1 and K_{EW} factors parametrization in STXS bins for constraining the Higgs boson self-coupling

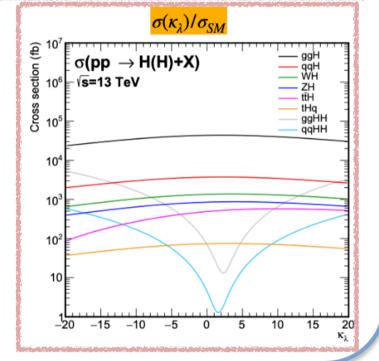
Fábio L. Alves (Nanjing University) on behalf of the ATLAS Collaboration EPS-HEP2023 Conference, Universität Hamburg, Aug 20-25, 2023

Higgs boson self-coupling (κ_{λ}) measurements: overview


Measurements of the Higgs trilinear selfcoupling $(\kappa_{\lambda} = \lambda_3 / \lambda_{SM})$ can be performed through:

- DiHiggs (HH) processes: direct searches HH cross sections depend directly on κ_2 at LO
- Single H processes: indirect constraints
 - no direct dependency on κ_{λ} at LO
 - sensitivity through <u>NLO EW corrections</u> to the single H processes:
 - universal $O(\lambda_3^2)$ correction due to Higgs wave-function renormalization
 - linear $O(\lambda_3)$ correction depending on production mode, decay channel and kinematics

Single Higgs cross sections as a function of κ_{λ}


• A parametrization of the single-Higgs cross sections in terms of the κ_i in regions defined by STXS 1.2 is performed • Simplified Template Cross Sections (STXS): mutually exclusive

- C_1 are the process and kinematicdependent coefficients which encodes the magnitude of the κ_{λ} -dependent corrections (linear correction) $\bigcirc Z_{\mu}^{BSM}$ is the wave function
- renormalization (from universal correction)
- K_{EW} factors represent the full set of NLO EW corrections Fabio Maltoni et al [1]

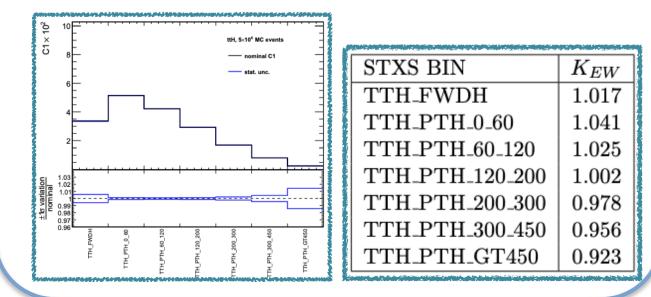
$$Z_{H}^{\text{BSM}}(\kappa_{\lambda}) = \frac{1}{1 - (\kappa_{\lambda}^{2} - 1)\delta Z_{H}}, \text{ with } \delta Z_{H} = -1.536 \times 10^{-3}.$$

$$\mu_i(\kappa_{\lambda},\kappa_i) = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{SM}}} = Z_H^{\text{BSM}}(\kappa_{\lambda}) \left[\kappa_i^2 + \frac{(\kappa_{\lambda} - 1)C_1^i}{K_{\text{EW}}^i} \right]$$

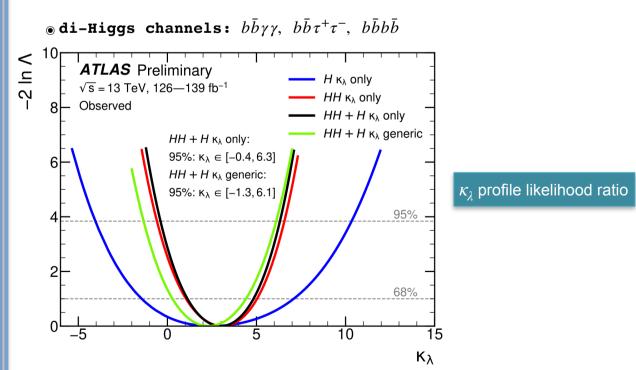
Fabio Maltoni et al [1]

Recipe for C1 and k-factor determination

C1 coefficients are obtained separately for the $t\bar{t}H$, $W(l\nu)H$,


κ_1 constraints from H+HH combination [3]

Input channels used in the combination:


Z(ll)H, and H(jj) processes:

- 5M of events are generated for each process using Madgraph5 aMC@NLO (v 2.5.5)using PDFset PDF4LHC15 nlo mc
- For each event, the weight representing LO cross section
 (w_{IO}) and the weight corrected by κ_2 -effects are computed (*W_{NLO}*)
- Events are further classified in STXS 1.2 bins using Rivet toolkit routine and C1 for a given STXS 1.2 bin is computed as: $C_1^i = \sum_{i} w_{\mathsf{NLO}}^j / \sum_{i} w_{\mathsf{LO}}^j$
- \bullet C1 coefficients for the $t\bar{t}H$ process show the largest sensitivity to the κ_{λ} variations:

Iarge effect for both inclusive/differential cross section • Uncertainties affecting C1 computation evaluated are found to be negligible

• single-Higgs channels (in STXS regions): $\gamma\gamma$, $ZZ^{*}(4l)$, $\tau^{+}\tau^{-}$, $WW(e\nu\mu\nu)$ (ggF, VBF), $b\bar{b}(VH, VBF, t\bar{t}H)$

- single-Higgs combination only constraint: • $-4.0 < \kappa_{\lambda} < 10.3$
- H+HH combination provides the most stringent constraints: • $-0.4 < \kappa_2 < 6.3$ (all other couplings set to SM unity)
- The addition of the single-Higgs analyses to the combination allow relaxing assumptions on κ_t
 - $-0.4 < \kappa_{\lambda} < 6.3$ (sensitivity on κ_{λ} is kept)
- Generic case where $\kappa_{\lambda}, \kappa_{V}, \kappa_{t}, \kappa_{b}, \kappa_{\tau}$ are floated simultaneously in the fit:
 - $-1.4 < \kappa_{\lambda} < 6.1$ (there is still strong constraint on κ_{λ})

For more information:

[1]: Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC (Eur. Phys. J. C (2017) 77: 887)

[2]: Modeling of the single-Higgs simplified template cross-sections (STXS 1.2) for the determination of the Higgs boson trilinear self-coupling (LHC Higgs Working Group, Public Note) (LHCHWG-2022-002)

[3]: Constraining on the Higgs boson self-coupling from H+HH production with the ATLAS detector using pp collisions at 13 TeV (Phys. Lett. B 843 (2024) 137745)

