Studies of new Higgs boson interactions through nonresonant HH production in the $b\overline{b}\gamma\gamma$ final state in pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector

Zihang Jia, on behalf of the ATLAS collaboration Nanjing University, IHEP zihang.jia@cern.ch

Motivation

- Since the discovery of the Higgs boson in 2012, a priority of the LHC physics has been to better understand its properties and couplings
- A direct probe of the Higgs boson trilinear self-coupling is possible via Higgs boson pair (HH) production
- HH production via vector boson fusion has a unique sensitivity to the quartic couplings between two Higgs bosons and two vector bosons
- Anomalous values of these couplings would point to new physics beyond the Standard Model

$HH \rightarrow b\overline{b}\gamma\gamma$ analysis overview

- $H \rightarrow b\bar{b}$: large branching ratio
- $H \to \gamma \gamma$: excellent $m_{\gamma \gamma}$ resolution

✓ Main backgrounds

- Non-resonant $\gamma\gamma$ backgrounds
- Single Higgs production

✓ Preselection

- 2 identified and isolated photons
- 2 b-tagged jets (77% b-tagging efficiency)
- < 6 central jets (reject $t\bar{t}H$ events)
- 0 electrons or muons (reject $t\bar{t}H$ events)

Event categorisation

Events are first divided into 2 mass regions using $m_{b\overline{b}\gamma\gamma}^* = m_{b\overline{b}\gamma\gamma} - m_{\gamma\gamma} - m_{b\overline{b}} + 250~GeV$ to target HH signals with different κ_{λ} and κ_{2V} values

Then in each mass region, a dedicated **boosted decision tree (BDT)** discriminant is trained against the continuum $\gamma\gamma$ background and single Higgs backgrounds **Input variables** include event-level kinematic quantities as well as the kinematic properties of photons, b-jets, and **VBF jets identified by BDT-based jet taggers**

Category boundaries chosen by maximising the combined number-counting significance $Z = \sqrt{2 \cdot [(S + B) \cdot \ln(1 + S/B) - S]}$

Signal extraction

The HH signals are extracted from an unbinned **maximumlikelihood fit** to the $\gamma\gamma$ mass spectrum across all categories

- Signal model: Double sided crystal ball function
- Background model: Exponential function

Results

No significant excess over the expected background is observed Upper limit at 95% CL on μ_{HH} : **4.0xSM** (obs), **5.0xSM** (exp) Allowed κ_{λ} interval at 95% CL: [-1.4, 6.9] (obs), [-2.8, 7.8] (exp) Allowed κ_{2V} interval at 95% CL: [-0.5, 2.7] (obs), [-1.1, 3.3] (exp) 2D constraints at 68% and 95% CL in the (κ_{λ} , κ_{2V}) plane

Reference ATLAS-COM-CONF-2023-057

EFT interpretations

- Higgs effective field theory (HEFT)
- Constraints on three Wilson coefficients
- Upper limits on seven benchmark points

Benchmark	c_{hhh}	c_{tth}	c_{ggh}	c_{gghh}	c_{tthh}
SM	1	1	0	0	0
1	5.11	1.10	0	0	0
2	6.84	1.03	-1/3	0	1/6
3	2.21	1.05	1/2	1/2	-1/3
4	2.79	0.90	-1/3	-1/2	-1/6
5	3.95	1.17	1/6	-1/2	-1/3
6	-0.68	0.90	1/2	0.25	-1/6
7	-0.10	0.94	1/6	-1/6	1
[q]](HH)=100 (HH)=100 (HH)=10				xpected limit d	7
102	. •	•		•	*
10 ¹ SM	l 2	3	4		7 ark point
Standard Model effective field the					

Constraints on two Wilson coefficients

