

Search for Higgs boson pair production with one associated Vector boson at CMS

Chayanit Asawatangtrakuldee (Chulalongkorn U.) on behalf of CMS Collaboration Reference : CMS PAS HIG-22-006

A search for Higgs boson pair production (HH) associated with a vector boson V (W or Z boson) is presented. The search is based on 138 fb^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC. The processes in this search include pp \rightarrow ZHH and pp \rightarrow WHH production. All hadronic decays and leptonic decays of W and Z bosons involving electrons, muons, and neutrinos are utilized. Higgs bosons are searched for in the bbbb channel.

Channel	V selection	
2 L	Muon: $p_T > 20$ GeV Electron: $p_T > 25$ GeV(leading), $p_T > 20$ GeV(sub-leading) $p_T(V) > 50$ GeV	
1L - R	Muon: $p_T > 25$ GeV Electron: $n_T > 32$ GeV(2017/2018) $n_T > 28$ GeV(2016)	
1L - B	$\Delta \varphi(\text{lep, MET}) < 2.0, p_T(V) > 125 \text{ GeV}$	

MET - R	$p_T(V) > 150 \ { m GeV}$	
MET - B	$p_T(V)>250~{ m GeV}$	
FH	65 < m _v < 105 GeV	

	Observed	Expected
κλ	(-37.7, 37.2)	(-30.1, 28.9)
κ_{VV}	(-12.2, 13.5)	(-7.2, 8.9)
κ_V	(-3.7, 3.8)	(-3.1, 3.1)
κ _{zz}	(-17.4, 18.5)	(-10.5, 11.6)
κ_{WW}	(-14.0, 15.4)	(-10.2, 11.6)