

Measurement of ttH and tH production in the H(bb) channel at CMS

Valeria Botta (RWTH Aachen University) on behalf of the CMS Collaboration

Analysis strategy

- Direct measurement of the top-Higgs Yukawa **coupling** as crucial test of the Standard Model and indirect probe for new physics
- Categorise events according to leptons, jets, and **b-tags** multiplicity
- Classify in **signal and bkg like classes** through neural networks (NN)
- Optimised observables for the fit
- *Yield* in control regions
- Output score of NN in less sensitive regions

Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (R)

Background modelling (ttbar)

- At particle level, distinguish between ttbar + jets with B, C or light hadrons
- Simulation for ttB at NLO in 4FS for a better description of kinematics [1-4]

V+jets

່∆n(bb) `

- ISR, FSR, µ_R, µ_F scale and PDF uncertainties decorrelated between ttB and other ttbar events
- **ME-PS uncertainty** decorrelated among ttB, ttC, ttLF
- Careful validation of the modelling through: - Goodness-of-fit tests

DL (\geq 4 jets, \geq 3 b-tags)

- *Likelihood* ratio combining scores from ttB and ttH classes

Measurement of ttH production rate (inclusive)

CMS Preliminary						138 fb ⁻¹ (13 TeV)	
		1 1	Ι	μ	tot	stat	syst
FH	⊦+ ∎	4-1		0.84	+0.49 -0.46	+0.25 -0.25	+0.42 -0.39
SL	₩■₩			0.46	+0.33 -0.33	+0.21 -0.21	+0.25 -0.26
DL	I∔- ⊞- H			-0.23	+0.41 -0.42	+0.31 -0.31	+0.26 -0.29
2016	₩₩₩			0.49	+0.42 -0.40	+0.25 -0.25	+0.33 -0.32

- Bias tests on the signal strength
- Pulls and impacts of nuisance parameters
- Normalisation of ttB and ttC from the final fit to the data

Measurement of ttH in Higgs p_T bins

• Categorisation in p_T bins through a neural network

Measurement of tH production rate

- 95% CL limits on μ_{tH}: 14.6 obs. (19.3 exp.)
- Simultaneous fit of tH and ttH signal strengths

Coupling and CP measurements

- partial decorrelation of ttB normalisation, ISR, FSR, gluon-splitting uncertainties in each p_T bin

• Extended uncertainty model

CMS Collaboration, "Measurement of ttH and tH production rates in the H→bb decay channel with 138 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13 \text{ TeV}^{\circ}$, CMS-PAS-HIG-19-011

Valeria.Botta@cern.ch

[1] T. Jezo et al., "New NLOPS predictions for tt +b-jet production at the LHC", Eur. Phys. J. C 78 (2018) 502

[2] F. Buccioni et al., "OpenLoops 2", Eur. Phys. J. C 79 (2019) 866 [3] F. Cascioli et al., "NLO matching for ttbb production with massive b-quarks", Phys. Lett. B 734 (2014) 210

[4] F. Buccioni et al., "NLO QCD predictions for ttbb production in association with a light jet at the LHC", JHEP 12 (2019) 015