

Measurements of Higgs boson production in decay channel with a tau lepton pair

Pascal Bärtschi (UZH) on behalf of the CMS Collaboration

VH analysis

Final states considered are based on the vector boson decay mode

- 1 lepton ($W \rightarrow e\nu, W \rightarrow \mu\nu$)
- 2 leptons ($Z \rightarrow ee, ZZ \rightarrow \mu\mu$)

and three final states of the Higgs boson decay into a tau lepton pair: $e\tau_h, \mu\tau_h, \tau_h\tau_h$

Dominant background: $W(\ell \nu)Z(\tau \tau)$ for WH and $ZZ \rightarrow 4\ell$ for ZH

- Background with jets misidentified as τ_h : Estimated in $Z \rightarrow \mu \mu + \tau_h$ events with two hadronic tau lepton isolation regions
- Background with jets misidentified as e: Estimated in $Z \rightarrow \mu\mu + e$ events with two electron isolation regions
- with two muon isolation regions

4 STXS bins are

qqH, ggH analysis

Four final states are considered: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$

Dominant backgrounds: **Z+jets**, **W+jets**, $t\bar{t}$, **QCD multijet**

- Background with two genuine tau leptons: **Tau embedding method**
- Background with jets misidentified as τ_h : Fake factor method
- Background with jets misidentified as e or μ : **OS/SS method**
- All other backgrounds are estimated from simulation

12 STXS bins are considered:

Event categorization is based on neural network multi classification with 15 signal classes and 5 background processes

Tau embedding method

Estimation of all backgrounds with two real τ (mostly from Z boson decay)

- $\mu\mu$ events selected in data \bullet
- Energy deposits of muons removed, replaced by simulated tau leptons with the same kinematics

Resu	lts	5				
	CMS			138 fb ⁻¹ (13 Te		
Inclusive signal strength:			• Ob:	served $\mapsto \pm 1\sigma$ tot $\pm 1\sigma$ s	sta	
$\mu_{\rm incl} = 0.82^{+0.11}_{-0.10}$				tot stat syst theo	bbb	
compatible with SM exp. within 2σ	$\mu_{_{incl}}$	CB NN	Heri	$\begin{array}{c} 0.93 + 0.12 + 0.06 + 0.07 + 0.07 + 0.07 + 0.07 + 0.07 + 0.07 - 0.07 - 0.07 - 0.07 - 0.082 + 0.11 + 0.06 + 0.06 + 0.06 + 0.05 + 0.082 + 0.10 - 0.06 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.04 - 0.06 - 0.06 - 0.04 - 0.04 - $	- 0.03 + 0.03 - 0.03	
ggH signal strength:		СВ	 	0.97 + 0.20 + 0.08 + 0.13 + 0.12 + 0.09	+ 0.06	
$\mu_{ggH} = 0.67^{+0.20}_{-0.18}$	μ_{ggH}	NN	H e -1	$\begin{array}{c} -0.18 & -0.08 & -0.12 & -0.09 & -0.08 \\ 0.67 & +0.20 & +0.08 & +0.14 & +0.10 & +0.18 \\ -0.18 & -0.08 & -0.14 & -0.07 & -0.08 \\ \end{array}$	- 0.06 - 0.05 - 0.05	

Fake factor method

Estimation of background with jets initiated by quarks or gluons and misidentified as hadronically decaying tau leptons (especially $\tau_h \tau_h$ channel has large contribution)

- Anti-isolation region: Tau lepton isolation vs jets is reverted ۲
- 3 determination regions for QCD multijet, W+Jets and $t\bar{t}$ (for $\tau_h \tau_h$ channel only QCD)
- Fake factors weighted with fraction of background contribution in AR:

 $F_F = f_{W+jets} \cdot F_F^{W+jets} + f_{QCD} \cdot F_F^{QCD} + f_{t\bar{t}} \cdot F_F^{t\bar{t}}$

STXS measurement performed in a total of 16 STXS bins

Anticorrelation observed between $ggH \ge$ 2 jets and qqH processes

No correlation between VH and ggH/qqH

Higgs coupling to fermions (κ_F) and vector bosons (κ_V)

 $H \rightarrow WW$ treated as signal

 κ_V close to one, κ_F 15% lower than SM expection

цц.		138 fb ⁻¹ (13 TeV)
×	CMS	68% CL CB-analysis
1 /	r	95% CL CB-analysis

OS/SS method

Estimate background with jets misidentified as electrons or muons in $e\mu$ channel

- Application region defined with same sign of q_e and q_{μ}
- Determination region with anti-isolated muons and isolated electrons give transfer factor F_T from AR to SR
- Extrapolate the number of fake leptons to the signal region with:

 $N_{SR} = F_T N_{AR}$

Reference

CMS Collaboration, «Measurements of Higgs boson production in the decay channel with a pair of τ leptons in proton-proton collisions at \sqrt{s} =13 TeV", EPJC 83 (2023) 562

EPS-HEP 2023, Hamburg

pascal.raffael.baertschi@cern.ch