EPS-HEP2023 conference

Contribution ID: 705

Type: Parallel session talk

New tests of short-distance dynamics in b->sll decays

Thursday 24 August 2023 08:30 (18 minutes)

The rare $B \to K^{(*)} \bar{\ell} \ell$ decays exhibit a long-standing tension with Standard Model (SM) predictions, which can be attributed to a lepton-universal short-distance $b \to s \bar{\ell} \ell$ interaction. We present two novel methods to disentangle this effect from long-distance dynamics: one based on the determination of the inclusive $b \to s \bar{\ell} \ell$ rate at high dilepton invariant mass ($q^2 \ge 15~{\rm GeV}^2$), the other based on the analysis of the q^2 spectrum of the exclusive mode $B \to K \bar{\ell} \ell$ (in the entire q^2 range).

Using the first method, we show that the SM prediction for the inclusive $b \to s\bar\ell\ell$ rate at high dilepton invariant mass is in good agreement with the result obtained summing the SM predictions for one- and two-body modes $(K,K^*,K\pi)$. This observation allows us to perform a direct comparison of the inclusive $b \to s\bar\ell\ell$ rate with data. This comparison shows a significant deficit $(\sim 2\sigma)$ in the data, fully compatible with the deficit observed at low- q^2 on the exclusive modes. This provides independent evidence of an anomalous $b \to s\bar\ell\ell$ short-distance interaction, free from uncertainties on the hadronic form factors.

To test the short-distance nature of this effect we use a second method, where we analyze the exclusive $B \to K\bar\ell\ell$ differential branching ratio data in the entire q^2 region. Here, after using a dispersive parametrization of the narrow charmonium resonances, we extract the non-SM contribution to the universal Wilson coefficient C_9 for every bin in q^2 . The q^2 -independence of the result, and its compatibility with the inclusive determination, provide a consistency check of the short-distance nature of this effect.

Collaboration / Activity

University of Zürich

Primary author: TINARI, Arianna (University of Zürich)

Presenter: TINARI, Arianna (University of Zürich)

Session Classification: T08 Flavour Physics and CP Violation

Track Classification: Flavour Physics and CP Violation