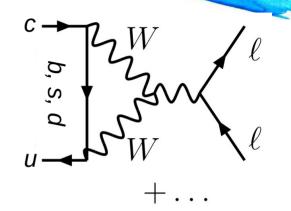


Luiz VALE SILVA

In collaboration with Svjetlana Fajfer (IJS) and Eleftheria Solomonidi (IFIC, UV – CSIC)

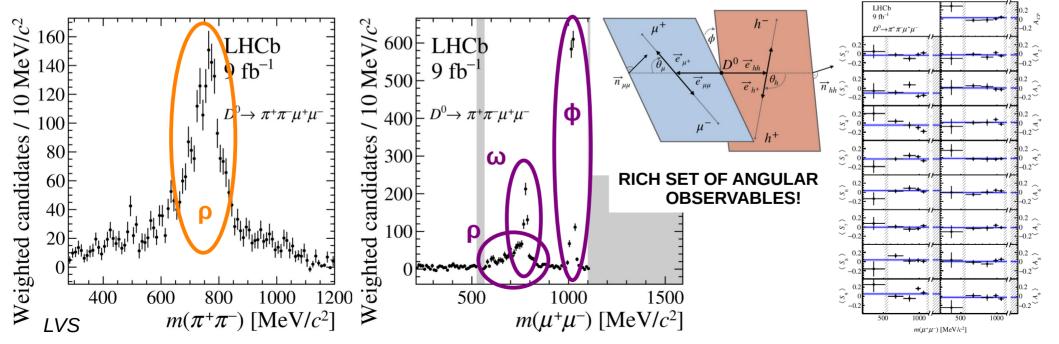
EPS-HEP 2023, 25/08 – Hamburg, Germany



"This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101031558"

Rare charm meson decays

 More effective GIM mechanism, CKM diagonal texture: non-perturbative effects play a very important role


[Fajfer, Prelovsek '06; Cappiello, Cata, D'Ambrosio '13; De Boer, Hiller '18; ...]

- LHCb, D⁰ to $(\pi^+\pi^-, K^+K^-)$ $\mu^+\mu^-$: large data set available, allowing for a closer look into the SM background
- Having control over the SM, move to observables measuring SM–NP interference: analysis of a rich set of angular observables

Large available dataset

- LHCb: 1310.2535; 1707.08377; 1806.10793; 2111.03327 (9/fb @ 7, 8, 13 TeV)
- Differential BRs: clear resonant peaks in $m(\pi^+\pi^-)$ and $m(\mu^+\mu^-)$
- Binned angular observables (CP-sym. "S", and CP-asym. "A" combinations)

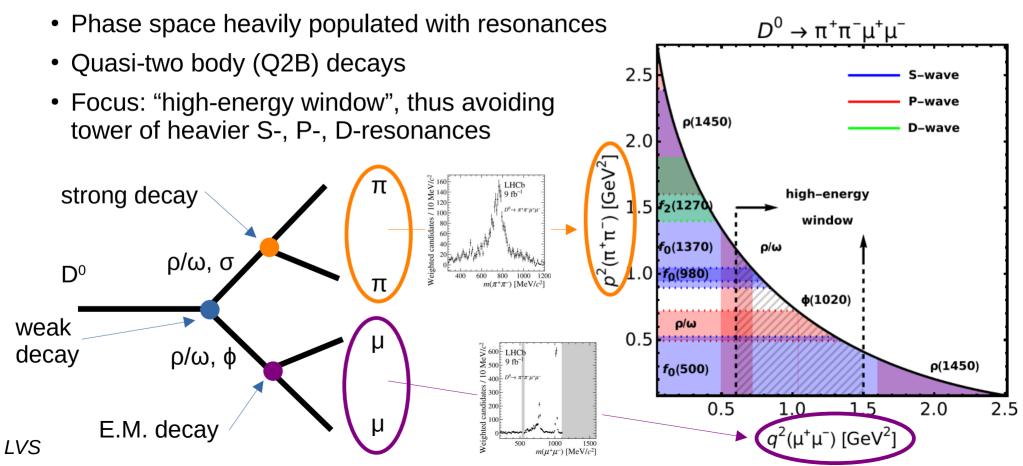
Testing short-distance physics

The effective weak interactions are encoded in:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\sum_{i=1}^2 C_i(\mu) \left(\lambda_d Q_i^d + \lambda_s Q_i^s \right) - \lambda_b \left(C_7(\mu) Q_7 + C_9(\mu) Q_9 + C_{10}(\mu) Q_{10} \right) \right] + \text{h.c.}$$

current-current (4-quark) operators: long-distance contribution

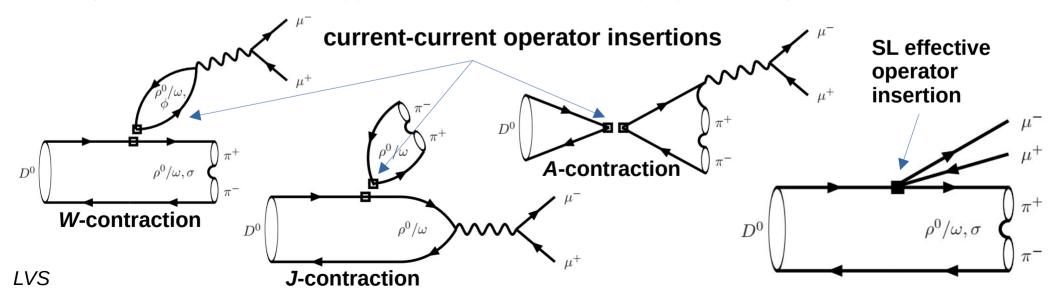
GIM & CKM: small contributions; C₁₀: higher order in EW interactions G_F²


$$Q_{10} = \frac{\alpha_{em}}{2\pi} (\overline{u}\gamma_{\mu}(\mathbf{1} - \gamma_5)c)(\overline{\ell}\gamma^{\mu}\gamma_5\ell)$$

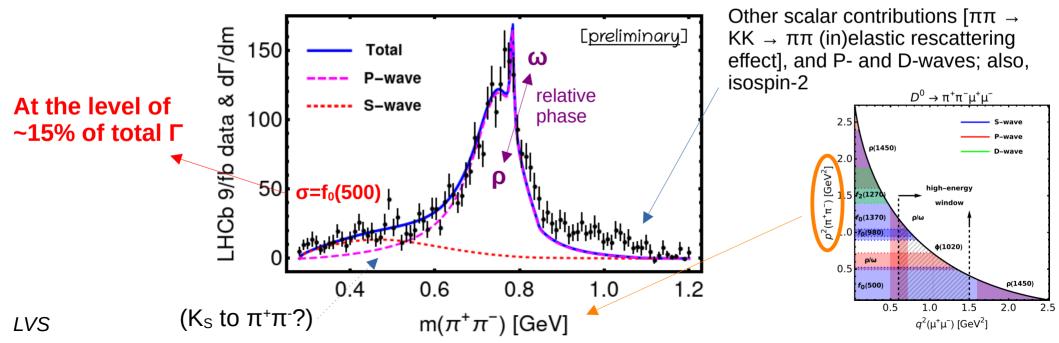
- Tests of SD require good enough description of the LD part
- HERE: address LD/hadronic physics;

novelty: S-wave contribution

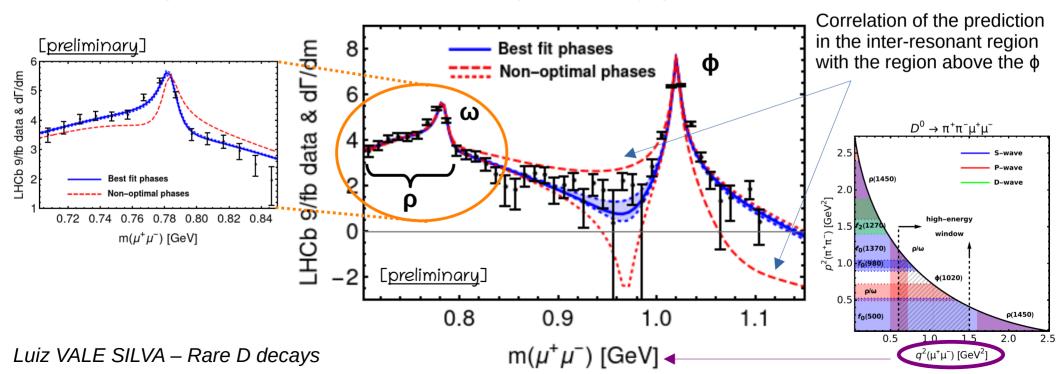
Available phase space



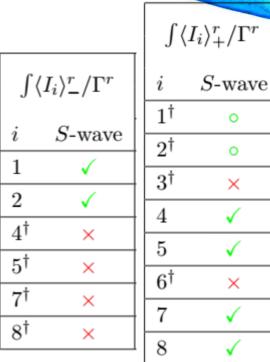
Factorization model


5

- Distinct topologies are present: W-, J- and A-contractions; SM short-distance negligible
 - A-contraction: suppressed in naive factorization by light quark masses [Bauer, Stech, Wirbel '87]
 - *J*-contraction in B⁺ to K(*)⁺ℓ⁺ℓ⁻: CKM suppressed V_{ub}*V_{us}/(V_{cb}*V_{cs})
 - Cappiello, Cata, D'Ambrosio '13: Bremsstrahlung, @ low-m(μ⁺μ⁻)
- Required non-perturbative inputs: **decay constants** (from ρ^0 , ω , $\phi \rightarrow e^+e^-$), **form factors** (BESIII SL D⁺ $\rightarrow \pi^+\pi^-e^+\nu_e$), **line-shapes** ($\rho^0/\omega \rightarrow \pi^+\pi^-$: Gounaris-Sakurai; σ : Bugg; ϕ , $\omega \rightarrow \mu^+\mu^-$: Breit-Wigner)
- Beyond naive factorization: <u>free O(1) normalization coefs, constant complex phases among intermediate resonances</u>


Fits to differential BRs

- 6
- S-wave: f₀(500) is clearly seen in present data
- Consistent with BESIII SL decay: D^+ to $\pi^+\pi^ e^+\nu_e$


Fits to differential BRs

- 7
- Relative strong-phases (4) among resonances: important impact
- Such phase differences can be probed by present data

Angular observables

- LHCb measured |S|²+|P|² (i.e., o) & P-wave only (i.e., x);
 straightforward to extend their analysis to include
 S- and P-waves interference (i.e., √)
- <u>SM predictions</u>, use previous strong-phase differences ("**S**" stands for CP-symmetric, I[†]_i ≡ **S**_i, i=1, ..., 9):
 - S_2 , S_3 , $S_4 \sim -10\%$ (S_1 is related to Γ and S_2)
 - S_5 , S_6 , S_7 = 0 (null tests of the SM)
 - S_7 , S_8 , $S_9 \sim 0$ (imaginary part among P-wave line-shapes)
 - \mathbf{A}_1 , ..., $\mathbf{A}_9 \sim 0$ (small CP violation)
- exp vs. theo: similar pattern seen in LHCb data, but large exp and theo uncertainties of O(few)% prevent better tests of the SM

 $\cos\theta_{\pi}$

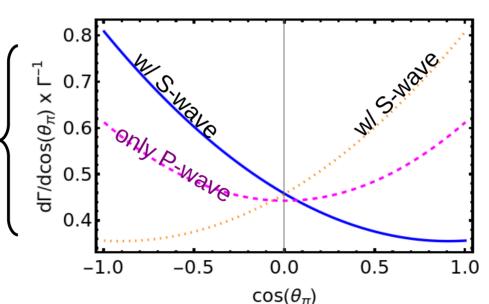
0: $|S|^2 + |P|^2$

√: S*P interference

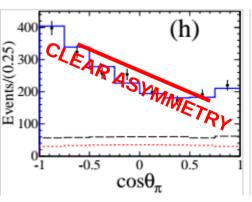
x: only P-wave

†: LHCb 2111.03327

9†


Luiz VALE SILVA – Rare D decays

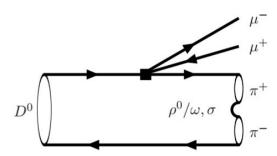
Angular observables



 Probe S- and P-waves interference also with distinct binned quantities

Observable depends on an S- and P-waves relative phase not probed by dΓ/dq², but by the previous S*P observables, which can reach **O(10)**%

BESIII (1809.06496) SL: $D^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$



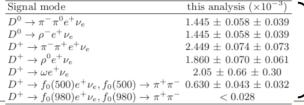
Also, BaBar (1012.1810) SL: $D^+ \rightarrow K^-\pi^+e^+\nu_e$

Null tests: SM-NP interference

10

NP can introduce contributions to semi-leptonic contact interactions, e.g.: |V_{ub} V_{cb}* C₁₀|<0.43 @ 95% CL (from D⁰ → µ⁺µ⁻ LHCb, 2212.11203)

- P-wave only: **S**₅, **S**₆ can reach **O(few)**%
- Claiming NP requires exhaustive tests; similar O(few)% reach in analogous S- and P-waves interference observables
- Not possible to conclude yet about novel bounds on NP, given bounds from other decay processes & presence of extra strongphases in the theo prediction & experimental precision


Conclusions

- Impact of present data on the charm sector
- Phase-space dominated by resonances
- First quantitative assessment of the S-wave
- Extra, straightforward LHCb measurements will further probe the S-wave
- S-wave provides novel null tests of the SM

Thanks!

BESIII SL decays: D to $\pi^-\pi$ e⁺ ν_e [1809.06496]

S-wave at the level of 25%!

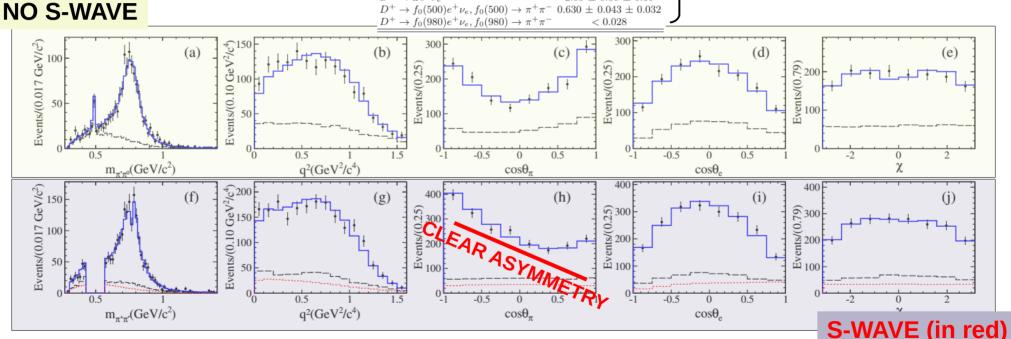


FIG. 2. Projections of the data and simultaneous PWA fit onto the five kinematic variables for $D^0 \to \pi^- \pi^0 e^+ \nu_e$ (top) and $D^+ \to \pi^- \pi^+ e^+ \nu_e$ (bottom) channels. The dots with error bars are data, the solid lines are the fits, the dashed lines show the MC simulated backgrounds, and the short-dashed lines in (f)–(j) show the component of $D^+ \to f_0(500)e^+\nu_e$.

Angular observables

The angular distribution of $D^0 \to h^+h^-\mu^+\mu^ (h=\pi,K)$ decays can be written as [8]

$$\frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} = \frac{1}{2\pi} \left[\sum_{i=1}^{9} c_{i}(\theta_{\mu}, \phi) I_{i}(q^{2}, p^{2}, \cos \theta_{h}) \right], \tag{5}$$

with the angular basis, c_i , defined as

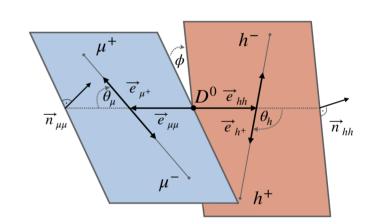
$$c_{1} = 1, c_{2} = \cos 2\theta_{\mu}, c_{3} = \sin^{2}\theta_{\mu}\cos 2\phi, c_{4} = \sin 2\theta_{\mu}\cos\phi, c_{5} = \sin\theta_{\mu}\cos\phi,$$

$$c_{6} = \cos\theta_{\mu}, c_{7} = \sin\theta_{\mu}\sin\phi, c_{8} = \sin 2\theta_{\mu}\sin\phi, c_{9} = \sin^{2}\theta_{\mu}\sin 2\phi.$$
(6)

The normalised and integrated observables $\langle I_i \rangle$ are defined as

$$\langle I_{2,3,6,9} \rangle = \frac{1}{\Gamma} \int_{q_{\min}^2}^{q_{\max}^2} dq^2 \int_{p_{\min}^2}^{p_{\max}^2} dp^2 \int_{-1}^{+1} d\cos\theta_h \, I_{2,3,6,9} \,,$$

$$\langle I_{4,5,7,8} \rangle = \frac{1}{\Gamma} \int_{q_{\min}^2}^{q_{\max}^2} dq^2 \int_{p_{\min}^2}^{p_{\max}^2} dp^2 \left[\int_0^{+1} d\cos\theta_h - \int_{-1}^0 d\cos\theta_h \right] \, I_{4,5,7,8} \,. \tag{10}$$

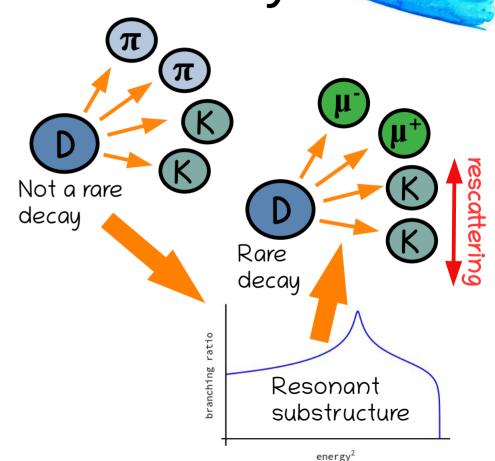

The observables reported in the Letter are the CP averages, $\langle S_i \rangle$, and asymmetries, $\langle A_i \rangle$, defined as

$$\langle S_{i} \rangle = \frac{1}{2} \left[\langle I_{i} \rangle + (-) \langle \overline{I}_{i} \rangle \right] ,$$

$$\langle A_{i} \rangle = \frac{1}{2} \left[\langle I_{i} \rangle - (+) \langle \overline{I}_{i} \rangle \right] ,$$
(11)

for the *CP*-even (*CP*-odd) coefficients $\langle I_{2,3,4,7} \rangle$ ($\langle I_{5,6,8,9} \rangle$).

See LHCb (2111.03327); De Boer, Hiller '18


$$\cos \theta_{\mu} = \vec{e}_{\mu\mu} \cdot \vec{e}_{\mu^{+}},$$
$$\cos \theta_{h} = \vec{e}_{hh} \cdot \vec{e}_{h^{+}}.$$

$$\cos \phi = \vec{n}_{\mu\mu} \cdot \vec{n}_{hh},$$

$$\sin \phi = [\vec{n}_{\mu\mu} \times \vec{n}_{hh}] \cdot \vec{e}_{hh},$$

Rare semi-leptonic decays

- Main problem: strong dynamics
- Data-driven approaches
 - (i) data on purely hadronic decay modes
 - D to ππππ, D to ππΚΚ, etc.: not rare decays
 - (ii) data on rescattering of final states
 - ππ to KK

Amplitude analyses: CLEO: 1703.08505 & LHCb: 1811.08304 indicate that cascade topologies may give sizeable contributions

