

Search for gravitational wave signals from known pulsars in O3 data using the 5n-vector ensemble method

Continuous gravitational waves (CWs)

SOURCES : Isolated spinning neutron stars with non-axisymmetric mass distribution (and not only [1])

- CWs are "long-lived" signals.
- CW frequency is linked to the source rotation frequency
- CW amplitude is expected much weaker than that generated by binary BH/NS coalescences

8 parameters for CW signal :

Different strategies considering source assumptions:

- <u>Targeted search;</u>
- Narrow-band search;
- Directed search;
- All-sky search;

[1] Piccinni, Galaxies 2022, 10(3), 72

CW Signal

Source as triaxial "bumpy" neutron star rotating around a principal axis of inertia :

$$h_0 \simeq 10^{-27} \left[\frac{f_{gw}}{100 \,\mathrm{Hz}} \right]^2 \left[\frac{10 \,\mathrm{kpc}}{d} \right] \left[\frac{I}{10^{38} \,\mathrm{kg} \cdot \mathrm{m}^2} \right] \left[\frac{\epsilon}{10^{-6}} \right] \quad \text{with} \quad \epsilon = \frac{|I_x - I_y|}{I_z} \approx \frac{\Delta R}{R}$$

$$h_0^{SD} = \frac{1}{d} \left(\frac{5}{2} \frac{GI_z}{c^3} \frac{\dot{f}_{rot}}{f_{rot}} \right)^{1/2}$$

-> Spin-down limit: theoretical upper limit

• Doppler correction

 $f_{gw} = 2f_{rot}$

- Spin-down correction
- Glitches (Ask me!)

The 5-vector method <u>P Astone et al 2012 J. Phys.: Conf. Ser.363 012038</u>

Luca D'Onofrio

EPS-HEP 2023

4

The 5-vector method <u>P Astone et al 2012 J. Phys.: Conf. Ser.363 012038</u>

$$x(t) = h(t) + n(t)$$
$$h(t) = H_0(H_+A^+ + H_\times A^\times)e^{j\omega_0 t + \gamma_0}$$

h(t) can be rewritten in terms of the 5-vectors: $X A^+ A^x$

$$\mathbf{X} = \int_{T} x(t) e^{-i(\omega_0 t - \mathbf{k}\Omega t)} dt \qquad \mathbf{k} = 0, \pm 1, \pm 2$$
$$\hat{H}_{+/x} = \frac{\mathbf{X} \cdot \mathbf{A}^{+/x}}{|\mathbf{A}^{+/x}|^2} \longrightarrow H_0 e^{i\gamma} H_{+/x}$$

$$S = |\mathbf{A}^+|^4 |\hat{H}_+|^2 + |\mathbf{A}^\times|^4 |\hat{H}_\times|^2$$

Luca D'Onofrio

CWs targeted search

NO evidence of CWs signal in the LIGO/Virgo data O3 LVK Targeted search: <u>Abbott et al 2022 ApJ 935 1</u>

- 236 known pulsars
- Three detectors (LIGO and Virgo) : O3 data
- Bayesian analysis
 - F-stat and 5-vector on "high-value" pulsars
- NO CW detection \rightarrow upper limits
 - o on the amplitude/ellipticity

N Pulsar:	P1	P2	 PN	
N Statistics:	S_1	S_2	 S_N	

Ensemble search

How to improve the detection probability? Combining sources to weak signals detection!

Statistically

- Sum of F-stats <u>Chen et al 2016 Phys.Rev.D94</u>
- Hierarchical Bayesian method
 <u>Pitkin et al 2018 Phys.Rev.D98</u>
- 5n-vector ensemble method D'Onofrio et al 2021 CQG 38 13502

Stochastic method

- <u>Giazotto et al. 1997 Phys.Rev.D 55</u>
- Stochastic Targeted search <u>De Lillo et al 2022 MNRS 513</u> <u>Deepali et al Phys. Rev. D 106, 043019</u>

In this presentation, results on O3 data

The ensemble statistic T(k)

- Simplest way to define an ensemble statistic : take the sum of the statistics S_i
 with ~200 pulsars, how many signals can be near the detection thr?
- To optimize the det. prob. we need to estimate the signals "strength"
 - Rank pulsars for increasing p-values (\equiv decreasing S_i)

 $\overline{S}_{(1)} < \overline{S}_{(2)} < \dots < \overline{S}_{(N)}$

• Construct the ensemble statistic T(k) as the partial sum:

$$\overline{T}(k) = \sum_{i=N-k+1}^{N} \overline{S}_{(i)} \longrightarrow \begin{array}{l} \text{Partial sum of} \\ \text{order statistics} \end{array}$$

P-value of ensemble

To reconstruct T(k) noise distribution:

- 1) Gaussian noise case → Monte Carlo procedure → Sensitivity test
 - a) Improvement in det. prob. depends on the power of single tests and on N

P-value of ensemble

To reconstruct T(k) noise distribution:

- 1) Gaussian noise case → Monte Carlo procedure → Sensitivity test
 - a) Improvement in det. prob. depends on the power of single tests and on N

2) Real case \rightarrow S distribution from off-source frequencies in a band (tenth of Hz) near the GW frequency

- a) BSD framework (*Piccinni et al 2019 CQG. 36 015008*)
- b) Generalize the Monte Carlo procedure starting from the experimental S distribution for each pulsar

The 5n-vector ensemble method

The 5n-vector ensemble method

Application to O3 data [1]

- 223 pulsars used in O3 targeted search
 - considering also pulsar in binary systems (168 out of 223)
- O3 data for LIGO and Virgo detectors
 - "weighted" 5n-vector

- 1. Single pulsar analysis
 - a. single harmonic search
- 2. Ensemble analysis —> 2 ensembles :
 - a. all pulsars, all detectors (N = 223)
 - b. millisecond pulsars, LIGO det. (N = 165)
- 3. Upper limit

[1] "Search for gravitational wave signals from known pulsars in LIGO-Virgo O3 data using the 5n-vector ensemble method", submitted to PRD

Single pulsar analysis

223 pulsars used in O3 targeted search (*R. Abbott et al. 2021*) First results on binary systems for the 5n-vector method!

30 O3 hmin Bayesian results $D_n = \frac{X - Y}{\max(X, Y)}$ 5n-vec results 10-24 25 Strain amplitude 20 10 -25 Counts 10 10 - 26 5 10-27 0 10^{2} 10^{3} 10 -100 -50 50 0 100 Frequency [Hz] D_n in %

Luca D'Onofrio

LIGO-Virgo O3 data, 223 pulsars

Luca D'Onofrio

Ensemble upper limits: going hierarchical

Hypothesis: we will assume a common exponential distribution for the ellipticities

Constraint on the mean ellipticity using two independent procedures :

•
$$P(\mu_{\epsilon}|\overline{T}(N)) \propto \left(\int L(\overline{T}(N)|\Lambda)\Pi(\Lambda|\mu_{\epsilon})d\Lambda\right)\Pi(\mu_{\epsilon})$$

• $P(\mu_{\epsilon}|\overline{S}_{1},..,\overline{S}_{N}) \propto \left(\prod_{i=1}^{N}\int L(\overline{S}_{i}|\epsilon_{i})\Pi(\epsilon_{i}|\mu_{\epsilon})d\epsilon_{i}\right)\Pi(\mu_{\epsilon})$

Ensemble upper limits: going hierarchical

Hypothesis: we will assume a common exponential distribution for the ellipticities

Constraint on the mean ellipticity using two independent procedures :

•
$$P(\mu_{\epsilon}|\overline{T}(N)) \propto \left(\int L(\overline{T}(N)|\Lambda)\Pi(\Lambda|\mu_{\epsilon})d\Lambda\right)\Pi(\mu_{\epsilon})$$

• $P(\mu_{\epsilon}|\overline{S}_{1},..,\overline{S}_{N}) \propto \left(\prod_{i=1}^{N}\int L(\overline{S}_{i}|\epsilon_{i})\Pi(\epsilon_{i}|\mu_{\epsilon})d\epsilon_{i}\right)\Pi(\mu_{\epsilon})$

LIGO-Virgo O3 data, 223 pulsars

Results in Pitkin et al 2018 Phys.Rev.D 98

92 pulsars the LIGO S6 science run $\sim 3.8 \times 10^{-8}$

Summary

- Pulsars are promising targets for the first CW detection
- Ensemble procedures improve the detection probability for the targeted search
 - 5n-vector ensemble method
- Application to O3 data considering 223 known pulsars
 - First application to binary systems for the 5n-vectors
 - No evidence of CW signals from the ensembles
 - Upper limits on the mean ellipticity of $\sim 3 \times 10^{-9}$

Theoretical minimum limit for millisecond pulsars of ≈ 10⁻⁹ supposed in <u>Astrophysical Journal L. 863, L40 (2018)</u>

This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

Thank you!

Targeted search Multi-messenger approach

- CW searches have a strong multi-messenger approach
- EM information constraints extrinsic parameters
- Pulsar observed in radio, X-ray, Gamma-ray band
 - \circ ~ 3000 known* pulsars (10^{8÷9} expected NSs)
- Targeted search for known pulsars:
 - full coherent analysis
 - LVK: 3 pipelines (Bayesian, F-stat, 5n-vec method)
- CW detection can return information about the physics of neutron stars (EOS, superfluidity, superconductivity, solid core..) depending on the emission scenarios

*http://www.atnf.csiro.au/research/pulsar/psrcat/

Magnetic field Axis Radio emission of rotation

CWs emission

"bumpy" neutron star [1]

$$f_{gw} = 2f_{rot}$$

"wobble" radiation [1]
superfluid component [2]

$$f_{gw} = f_{rot}$$
 and $2f_{rot}$

• R-modes [3]

 \bullet

$$f_{gw} \approx \frac{3}{4} f_{rot}$$

[1] Jones, arXiv:2111.08561 (2021)
[2] Jones, Monthly Notices of the Royal Astronomical Society, 402 4 (2010)
[3] Idrisy et al, Phys. Rev. D 91, 024001 (2015)

Luca D'Onofrio

Tools

• 5-vector method, matched filter in frequency domain

$$x(t) = h(t) + n(t)$$

$$H_{+} = \frac{\cos 2\psi - \eta \sin 2\psi}{\sqrt{1 + \eta^{2}}}$$

$$H_{\times} = \frac{\sin 2\psi + \eta \cos 2\psi}{\sqrt{1 + \eta^{2}}}$$

$$H_{\times} = \frac{\sin 2\psi + \eta \cos 2\psi}{\sqrt{1 + \eta^{2}}}$$

$$A_{+} = a_{0} + a_{1c} \cos \Omega t + a_{1s} \sin \Omega t + a_{2c} \cos 2\Omega t + a_{2s} \sin 2\Omega t$$

$$A_{\times} = b_{1c} \cos \Omega t + b_{1s} \sin \Omega t + b_{2c} \cos 2\Omega t + b_{2s} \sin 2\Omega t$$

 \mathbf{A}^{\times}

It can be rewritten in terms of <u>Signal 5-VECs</u>

$$\hat{H}_{+/x} = \frac{\mathbf{X} \cdot \mathbf{A}^{+/x}}{|\mathbf{A}^{+/x}|^2} \longrightarrow H_0 e^{i\gamma} H_{+/x}$$

• **5n-vector method**, extension to a network of n detectors

$$\mathbf{X} = [\mathbf{X}_L, \mathbf{X}_H] \qquad \mathbf{A}^+ = [\mathbf{A}_L^+, \mathbf{A}_H^+] \qquad \mathbf{A}^{\times} = [\mathbf{A}_L^{\times}, \mathbf{A}_H^{\times}]$$

 $S = |\mathbf{A}^+|^4 |\hat{H}_+|^2 + |\mathbf{A}^\times|^4 |\hat{H}_\times|^2$ — 5n-vec definition

Luca D'Onofrio

 \mathbf{A}^+

Band Sample Data (BSD)*

- Database of sub-databases that reduces computational cost (narrow frequency band required)
- "BSD-file" is a complex time series that covers 10 Hz/1 month of original data
- We can extract sub-bands joining months (for targeted search, 1 Hz frequency band)

*Piccinni et al 2019 Class. Quantum Grav. 36 015008

P-Pdot diagram

Credit to: <u>Condon and Ransom,</u> <u>"Essential Radio</u> <u>Astronomy" (2016)</u>

Luca D'Onofrio

"High accuracy"

Sky position

$$\Delta \theta < 0.1 \arccos\left(\frac{10^7 \, \mathrm{s}}{T}\right)^2 \left(\frac{1 \, \mathrm{kHz}}{f_0}\right)$$

 $\frac{1}{1\,\mathrm{yr}} \approx 10^{-7} \mathrm{Hz}$

 $\dot{f} \cdot 1 \text{ yr} < \frac{1}{1 \text{ yr}}$ or $\dot{f} < 10^{-15} \text{ Hz/s}$

See Maggiore, "Gravitational waves : part I" for more details

Luca D'Onofrio

Targeted Search : O3 results

LVK+, ApJ 935 1 (2022)

- 236 known pulsars
 - 74 not in previous searches
 - 161 millisecond pulsars
- Three detectors (LIGO and Virgo) : O3 data combined with O2 data
- Single-harmonic search $f_{gw} = 2f_{rot}$ and Dual-harmonic search $f_{gw} = f_{rot}$ and $2f_{rot}$
- Bayesian analysis
 - F-statistic and 5-vector analysis on high value pulsars (~20 out of 236)
- NO CW detection →upper limits
 - on the amplitude
 - on the ellipticity

O3 results : Bayesian method

O3 results : ellipticity

 Best limit on ellipticity was J0711-6830 with 5.26x10⁻⁹ (at a distance of 0.1 kpc)

 Best overall ellipticity was J0636+5129 with 3.2x10⁻⁹

[1] LVK+, ApJ 935 1 (2022)

CW searches

Luca D'Onofrio

Credit to:

Heterodyne correction

<u>Heterodyne method</u> : data are multiplied by a complex exponential function that removes the phase modulation. The starting data is complex, already filtered and sub-sampled before applying the heterodyne: **BSD files** (*Piccinni et al 2019 Class. Quantum Grav. 36 015008*).

$$x(t) = [h(t) + n(t)]e^{-i\Phi_{corr}(t)}$$

$$\Phi_{corr}(t) = \Phi_{sd}(t) + \Phi_d(t) + \Phi_{bin}$$

$$\Phi_d = 2\pi \int_{\tau_{ref}}^t f_0(t') \frac{\vec{r} \cdot \hat{n}}{c} dt' \approx \frac{2\pi}{c} p_{\hat{n}}(t) f(t)$$

$$\Phi_{sd} = 2\pi \int_{\tau_{ref}}^t \left[\dot{f}(t' - \tau_{ref}) + \frac{1}{2} \ddot{f}_0(t' - \tau_{ref})^2 + \dots \right] dt'$$

$$\Phi_{bin} = a_p \left[\sin \omega \left(\cos E - e \right) + \cos \omega \sin \left(E \sqrt{1 - e^2} \right) \right]$$

Luca D'Onofrio

Binary parameters uncertainties

Figure 1: Uncertainties for the orbital parameters provided by the T2 model. *a*) Relative errors on t_p and ω as a function of the eccentricity. *b*) Relative errors on *P* and *p* as a function of the eccentricity. *a*) Absolute errors on the eccentricity as a function of the eccentricity values.

Multiple testing

Null hypothesis $H_i \ : \ heta_i = 0$

$$K_i : \theta_i > 0$$

Null hypothesis

$$H = H_1 \cap \ldots \cap H_N \ : \ \theta_1 = \ldots = \theta_N = 0$$

Alternative hypothesis

$$K = K_1 \cup ... \cup K_N$$
: at least one $\theta_i > 0$

Example : Fisher Test combining p-values to define a new test statistics *F*

Multiple testing

N experiments

$$F = -2\sum_{i=1}^{N} \log P_i \sim \chi^2(x; 2N)$$

Luca D'Onofrio

Theoretical test

Luca D'Onofrio

Theoretical test

Dependence on N

Luca D'Onofrio

EPS-HEP 2023

36

Test with Hardware Injections

HI_3 for LLO O3 data

Luca D'Onofrio

Test with Hardware Injections

LLO, 1 day-long datasets from 15/08/2019, HI_3

Test with Hardware Injections

LLO, 1 day-long datasets from 15/08/2019, HI_3

20 days with signals over the 40 considered days

Luca D'Onofrio

Ensemble analysis Millisecond pulsars, LIGO detectors

Discussion

- The lowest limit on the ellipticity from the targeted search is 3.2×10^{-9} for J0636+5129 while from the all-sky search is 1.4×10^{-9} for a neutron star at 10 pc and 2047.5 Hz.
- Theoretical minimum limit on the ellipticity for millisecond pulsars of $\approx 10^{-9}$ supposed in [1]
- The upper limits in [2,3] on average ellipticity for the neutron star population are O(10⁻⁸) from cross-correlation based searches of a stochastic signal
- The upper limits on the hyperparameter for the exponential distribution do not consider the uncertainties on the distance.
- The hierarchical procedures assume that all the analyzed pulsar ellipticities are drawn from a common distribution that can be too simplicistic to describe the true ε distribution.

[1] Astrophysical Journal L. 863, L40 (2018); [2] Phys. Rev. D 106, 043019 (2022); [3] Mon. Not. Roy. Astron. Soc. 513, 1105 (2022)