

Search for Prompt Atmospheric Neutrinos with IceCube

Jakob Böttcher on behalf of the IceCube Collaboration

Prompt Atmospheric Neutrinos

- Atmospheric neutrinos dominate the neutrino flux from GeV to 100s of TeV
 - Decay product of mesons in cosmic-ray air showers
 - The components of atmospheric neutrinos
 - Conventional flux from kaon and pion decays
 - Neutrinos from prompt decays of heavy hadrons (charm mesons, ...)
 - prompt (atmospheric) neutrino flux
- Model predictions (BERSS, SIBYLL, ...) on prompt neutrino flux have large uncertainties
 - Large uncertainties in forward production of heavy mesons
 - Small coverage by collider experiments
 - Further uncertainty from primary flux models
- Prompt atmospheric neutrino flux not measured so far
- Significant background in the analysis of the astrophysical neutrino energy spectrum
- Measurement of prompt atmospheric neutrinos will decrease uncertainties in heavy hadron production

IceCube Neutrino Observatory

- IceCube observes light of secondary particles of high energy neutrinos with 5160 optical modules in the Antarctic ice
- Search for astrophysical neutrinos and their sources + spectrum
- Event topologies in IceCube:
 - Muon Tracks (muon neutrino CC interactions)
 - Hadronic/EM cascades (NC/CC interactions)
 - Double cascades (Tau decays)
- Events can start inside or outside the detector
- Several event selections based on these topologies:
 - Up-going muon tracks (Northern tracks)
 - Hadronic cascades (Cascades)
 - High energy starting events (HESE)

Prompt Neutrino Flux in IceCube

- Event selections differ in sensitivity to prompt neutrino flux
- Published IceCube 90% limits on prompt atmospheric neutrino flux
 - 7.5 year HESE [arXiv:2011.03545]:
 - 9.82 x BERSS
 - 6 years Northern Tracks [arXiv:1607.08006]:
 - 1.05 x ERS
 - 6 years Cascades [arXiv:2001.09520]:
 - 5 x BERSS
- Sensitivity of single selections not good enough to find prompt flux

=> Combine selections to Global analysis

Global Fit Analysis

- Ongoing efforts to combine event selections
- So far combined Northern Tracks and Cascades
- First results shown at ICRC [proceeding]
- Expect improved sensitivity to prompt atmospheric neutrino flux
 - Increase in statistics
 - Decrease in uncertainties of astrophysical flux
 - Region with decreased (prompt) atmospheric neutrino flux (Downgoing self-veto)

Global Fit Analysis

- Ongoing efforts to combine event selections
- So far combined Northern Tracks and Cascades
- First results shown at ICRC [proc<u>eeding</u>]
- Expect improved sensitivity to prompt atmospheric neutrino flux
 - Increase in statistics \bigcirc
 - Decrease in uncertainties of \bigcirc astrophysical flux
 - Region with decreased (prompt) 0 atmospheric neutrino flux (Downgoing self-veto)

fraction of prompt neutrino events

Sensitivity Study

- Analysis method:
 - Forward folding of MC with detector response into zenith, energy bins
 - Binned Poisson Log-Likelihood
 - Minimize signal and nuisance parameters (detector systematics and background flux uncertainties)
 - Each flux component is scaled by independent normalization
- Sensitivity:
 - 90% expected Central Limit: ~1 x SIBYLL 2.3c
 - Analysis will likely not exclude current models (BERSS etc.)
- Discovery potential:
 - Significance will be at the 1 or 2 sigma level

Systematic Biases

- Prompt neutrino flux is sub-dominant (< 10% of expected neutrino rate)
- Minor variations in "background" lead to large variation in fitted prompt flux
- Prone to systematic effects in other flux components
 - Assumptions on astrophysical flux model (e.g. SPL, Log-P, BPL, ...) (see <u>ICRC proceeding</u>)
 - Undercoverage of conventional flux uncertainties (primary flux variation)
 - Unaccounted anisotropy in Astrophysical flux component (e.g. galactic plane)
- Test robustness of the prompt flux fit by injecting variations of astrophysical and conventional neutrino fluxes

- Spectral shape of astrophysical flux is not well known
- Extrapolation to TeV region strongly depends on assumed model description
- Sensitivity to prompt neutrino flux starts at a few TeVs
- Analysis with SPL introduces bias of up to 40%
- Smallest bias by most flexible astrophysical model (Piecewise)

Additionally:

region

Change in prompt sensitivity by variation of astrophysical model

22.08.2023 – EPS-HEP 2023 – Jakob Böttcher

Fitted Prompt Norm

Fitted Astro Model

Conventional Flux Coverage

- Conventional Flux uncertainties from hadronic and primary CR models
 - Hadronic uncertainties modeled by Barr scheme
 - Primary CR model uncertainty based on interpolation between H4a and GST
- Injecting GSF leads to in 10%-20% bias on prompt normalization
- => Not all primary flux variations are fully covered

Future update: data-based conventional flux modeling (<u>daemonflux</u>)

Diffuse Galactic Neutrino Flux

- Astrophysical flux is not completely isotropic
- Current results show that a fraction of diffuse astrophysical neutrinos originate from the milky way [Science paper]
- Unaccounted anisotropy causes mismatch in zenith dependence
- Injecting 5 x Fermi-Pi0 as galactic neutrino flux leads to ~20% bias on prompt norm

Conclusion and Outlook

- IceCube's Global Fit efforts result in improved sensitivity regarding the prompt atmospheric neutrino flux
- Combined large atmospheric neutrino statistics of northern tracks with decreased atmospheric flux of cascades
- 90% sensitivity is close to the SIBYLL 2.3c prompt flux prediction
- Mismodelings of other components can lead to biases on prompt neutrino flux measurement
 - Astrophysical bias can be avoided by piecewise model parametrization
 - Undercoverage of primary flux uncertainty leads to 10%-20% uncertainty
 - Disregard of galactic flux leads to a 20% bias

- Future update to data-based conventional flux modeling (<u>daemonflux</u>)
- Include galactic diffuse model in global fit analysis

Backup

Production Phase Space

Physics Institute III B

Correlations

Feldman-Cousins

Up-Going Muon Track Analysis

- Analysis of the high energy astrophysical neutrino spectrum
- Current analysis method:
 - Forward folding of MC with detector response into zenith, energy bins
 - Binned Poisson Log-Likelihood
 - Minimize 3 signal (astro x 2 + prompt) and 13 nuisance parameters
- Atmospheric neutrino flux treatment:
 - Based on calculations with MCEq
 - SIBYLL 2.3c + Parameters from Barr et. al.
 - Primary CR model based on H4a and GST (interpolation)
 - Spectral shape adjusted by delta gamma
 - Constant scaling with normalization factor
- Probability intervals by scaling of prompt normalization (norm=0 => H₀)

Sum

Prompt Atm. Conv. Atm.

Astrophysical Muon Template

- Shape of astrophysical neutrino flux unknown at low energies
- Northern tracks sensitive energy range starts at 15 TeV
- Flux below 15 TeV driven by choice of parametrization
- Sensitivity to prompt neutrino flux extends to 1 TeV
- => Measurement of prompt neutrino flux is biased by astrophysical model choice

- Various astrophysical models have been fitted in previous analyses
- Test magnitude of bias by varying assumed and tested astrophysical models
- Inject astrophysical models
- Vary model parameters according to published uncertainties

Astrophysical Model	Function	Assumed Values
Powerlaw	$\Phi_{\rm astro}^0/C_0(\frac{E}{100 { m TeV}})^{-\gamma}$	$\Phi_{\rm astro}^0 = 1.44 \pm 0.26,$
		$\gamma = 2.37 \pm 0.09$
Log-Parabola	$\Phi_{\text{astro}}^0/C_0(\frac{E}{100 \text{ TeV}})^{-\alpha-\beta\log_{10}(\frac{E}{100 \text{ TeV}})}$	$\Phi_{\rm astro}^0 = 1.79 \pm 0.4,$
		$\alpha = 2.03 \pm 0.22,$
		$\beta = 0.45 \pm 0.29$
Piecewise	$\sum_{i}^{5} \chi(E) \Phi_{i}^{0} / C_{0} (\frac{E}{100 \text{ TeV}})^{-2}$	Piecewise fit results in [7]
Cascades	$\sum_{i}^{13} \chi(E) \Phi_{i}^{0} / C_{0} \left(\frac{E}{100 \text{ TeV}}\right)^{-2}$	Piecewise fit results as
		prior [13]
Cutoff	$\Phi_{\rm astro}^0/C_0(\frac{E}{100 {\rm TeV}})^{-\gamma} e^{-\frac{E}{E_{\rm cutoff}}}$	$\Phi_{\rm astro}^0 = 1.64 \pm 0.39,$
		$\gamma = 2.0 \pm 0.4,$
		$\log_{10}(E_{\rm cutoff}) = 6.1 \pm 0.3$
Astro BL-Lac	$\Phi_{\text{Cutoff}}(E) + \Phi_{\text{BL-Lac}}(E)$	Adding the BL-Lac astro-
		physical model [13, 18]

• Fit with:

- Powerlaw
- Log-Parabola
- Piecewise
- Cascades

- Distribution of fitted prompt normalizations shows bias (std) caused by variation of astrophysical models
- Results:
 - Large bias in Powerlaw fit
 - LogParabola and Piecewise are less biased
 - Using priors from cascades sample analysis reduces bias significantly
- Sensitivities:
 - Sensitivity of SPL/LogP/Piecewise comparable (prompt norm ~2.4-2.9)
 - Cascade priors improve sensitivity (prompt norm
 - ~1.45)

