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rPearson ≡
∑i (predi − ¯pred) (truei − ¯true)

∑i (xi − x̄)2 ∑i (yi − ȳ)2
∈ [−1, 1]

Spatiotemporal ResNet Architecture 

The underlying concept is to extract increasingly abstract spatial and temporal features from 
the data recorded by the seismic array. Subsequently, the network learns to translate the 
features into the corresponding GGN strain.

‣Spatial MaxPooling: Reduce spatial dimensions for better latent feature abstraction.

‣Temporal Unit: WaveNet3 inspired dilated 1D Convolutions. The receptive field grows 
exponentially with the dilation factor. 

‣Spatial Unit: Time-distributed 2D Convolutions applied to the spatial axis. The modular 
approach allows potential adaptation to Graph convolution layers.
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An idealized simulation of the signals in the seismic sensor array and the corresponding GGN 
strain is used to develop a suited network architecture and perform a first proof of concept.

Simulation 

‣ Positioning: regular 8x8 grid in ET 
plane at 250m depth  

‣ Instrumental noise: use noise ASD 
measurements1 of state-of-the art 
seismometer to generate colored noise 

‣ Noise level:  is 
realistic, additional scenario with 

 implemented to test 
noise robustness of the network

SNR = 𝒪 (103)
SNR = 𝒪 (10)

Steps to model the transfer function 
between the seismic field and the GGN 
strain present in the interferometer: 
1. Test-mass acceleration: analytical 

solution for spherical cavities2 
2. Test-mass displacement: pendulum to 

approximate suspension system 
3. Strain: combine test-masses and ET 

geometry 

‣ Fast analytical Monte-Carlo approach: construct the seismic field 
through sampling of multiple wave equations 

‣ Wave modes: gaussian wave packets of body p- and s-waves 
‣ Distant sources: propagating wavefronts modeled as plane waves 
‣ Dispersion & scattering: simulate homogenous half space
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Background & Methodology

Gravity-Gradient Noise (GGN) Cancellation 
GGN caused by seismic perturbations is anticipated to be the limiting factor for the sensitivity 
of third-generation gravitational wave detectors at frequencies below 10 Hz. For the Einstein 
Telescope, the underground construction alone will not provide sufficient shielding, and 
additional cancellation will be critical to achieve the design sensitivity. The associated 
challenge is a precise reconstruction of GGN based on the seismic activity recorded by an 
array of auxiliary sensors.

Deep Learning Approach 
We propose a deep neural network (NN) to reconstruct the GGN transfer 
function. Model independent training can be achieved with real 
measurement data in the future.

Seismic Array Neural Network GGN Prediction

Mitigated GGN sensor≡

Initial GGN

‣ No artificial noise through 
potential over-prediction

Summary 
‣Successful proof-of-concept study for GGN cancellation using deep learning techniques 
‣ Test scenario with factor two cancellation and good instrumental noise robustness

Conclusion

Outlook

‣ Investigate potential for online or 
forecasting applications  
(Multi Messenger Astronomy)

‣Explore techniques for training on 
unbalanced datasets

‣Adapt NN to optimize irregular 
sensor arrays using a Graph NN 

Towards Optimized Sensor Arrangements

Relative Sensor Importance 
‣ Motivation: NN can be utilized to 

optimize sensor array positioning 
 reduce total borehole length 

while increasing the GGN 
correlation

→

‣ Technique: important sensors 
have large gradients  
(‘Saliency maps5’)

‣ Result: insights in exploitable 
symmetries and important sensor 
positions 

ϵRMS ≡
RMStrue − RMSpred

RMStrue

Quantitative Performance Metrics : SNR = 𝒪 (103): SNR = 𝒪 (10)
‣ Strong linear correlation of 0.85 and 

factor two cancellation on average  

‣ Histogramm shows relative RMS 
cancellation efficiency: 

‣ Indicates good instrumental noise 
robustness 

‣ Train NN to predict GGN 
from 40k seismic events

‣ Test on 5k independent 
events  

‣ Evaluate quantitative 
performance metrics and 
compare the two 
instrumental noise 
scenarios

Noise Mitigation Performance 

‣ No artificial noise through 
potential over-prediction
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1 2‣ NN learns bias from data  
 challenging in case of 

strongly unbalanced training 
datasets

→

‣ Residual GGN follows white 
noise spectrum 

‣ Sensor spacing influences 
high-frequency resolution

Strain Spectral Density 
To investigate any spectral performance dependence, the strain spectral density is 
estimated over the whole test dataset according to Welch’s method5.
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