Simultaneous extraction of PDFs and SMEFT parameters from jet and $t\bar{t}$ data

Xiao-min Shen

Shanghai Jiao Tong University

in collaboration with Jun Gao, Meisen Gao, T.J. Hobbs, DianYu Liu (arXiv:2211.01094 (JHEP))

EPS-HEP 2023, 24 August 2023

Indirect BSM effects in framework of SMEFT

- Ingredients of SM Effective Field Theory (SMEFT)
 - field (particle) content: same as SM
 - symmetries: $SU(3)_C \times SU(2)_L \times U(1)_Y$ (+ flavor symmetry + L/B conservation)
 - expanded in $\Lambda_{\rm NP}~(\gg \Lambda_{\rm EW})$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots$$

- Parameterize indirect BSM effects by SMEFT
 - model-independent
 - + dim-6 operators suffice if $\Lambda_{\rm NP}$ is very large

Motivation for joint SMEFT-PDF fits

- SMEFT analyses may be biased using SM PDFs
 - → joint SMEFT-PDF fits
- Recent interest in this direction

1902.03048, 1905.05215, 2104.02723, 2111.10431, 2201.07240, 2211.01094, 2303.06159, 2307.10370,... talks from Maeve Madigan, Katerina Lipka, James Moore

- In this work:
 - demonstration study of joint SMEFT-PDF fits
 - * CT18 framework + more jet, $t\bar{t}$ data
 - explore possible correlations between SMEFT and QCD (PDF, α_s, m_t)
 - uncertainties estimation by Lagrange Multiplier scans
 - boosted by ML skills

The data sets

- default CT18 fitted experiments + additional tt̄, jet data
- 112 (67) fb^{-1} of $t\bar{t}$ (jet) production data for nominal fit

Experiments	$\sqrt{s}(\text{TeV})$	$\mathcal{L}(\mathrm{fb}^{-1})$	observable	$oxedsymbol{N_{ m pt}}$
*† LHC(Tevatron)	7/8/13(1.96)		$t\bar{t}$ total cross section	8
*† ATLAS $t \bar{t}$	8	20.3	1D dis. in $p_{T,t}$ or $m_{t\bar{t}}$	15
*† CMS $tar{t}$	8	19.7	2D dis. in $p_{T,t}$ and y_t	16
$\overline{ m CMS} \; t ar{t}$	8	19.7	$1 \mathrm{D} \; \mathrm{dis.} \; \mathrm{in} \; m_{t \bar{t}}$	7
*† ATLAS $tar{t}$	13	36	$1 \mathrm{D} \; \mathrm{dis.} \; \mathrm{in} \; m_{t ar{t}}$	7
*† CMS $tar{t}$	13	35.9	$1 \mathrm{D} \; \mathrm{dis.} \; \mathrm{in} \; m_{t ar{t}}$	7
*† CDF II inc. jet	1.96	1.13	$2D ext{ dis. in } p_T ext{ and } y$	72
*† D0 II inc. jet	1.96	0.7	$2D ext{ dis. in } p_T ext{ and } y$	110
*† ATLAS inc. jet	7	4.5	$2D ext{ dis. in } p_T ext{ and } y$	140
*† CMS inc. jet	7	5	2D dis. in p_T and y	158
* CMS inc. jet	8	19.7	2D dis. in p_T and y	185
† CMS dijet	8	19.7	3D dis. in $p_T^{ave.}$, y_b and y^*	122
† CMS inc. jet	13	36.3	2D dis. in p_T and y	78

^{*(}in nominal top fits); †(in nominal jet fits)

Xiaomin Shen EPS-HEP 2023 24-Aug-2023

Setup of theoretical predictions

selected dim-6 operators relavant for top/jet production

$$tar{t}$$
 production: SMEFT@NLO

$$O_{tu}^{1} = \sum_{i=1}^{2} (\bar{t} \gamma_{\mu} t_{R}) (\bar{u}_{Ri} \gamma^{\mu} u_{i})$$

$$O_{td}^{1} = \sum_{i=1}^{3} (\bar{t} \gamma^{\mu} t) (\bar{d}_{Ri} \gamma_{\mu} d_{i})$$

$$O_{tq}^{8} = \sum_{i=1}^{2} (\bar{q}_{i} \gamma^{\mu} T^{A} q_{i}) (\bar{t} \gamma_{\mu} T^{A} t)$$

$$O_{tG} = i g_s (\bar{Q} \tau^{\mu\nu} T_A t) \tilde{\varphi} G^A_{\mu\nu} + \text{h.c.}$$

jet production: CIJet

contact interaction

$$O_1 = 2\pi \Biggl(\sum_{i=1}^3 \bar{q}_i \, \gamma_\mu \, q_i \Biggr) \Biggl(\sum_{j=1}^3 \bar{q}_j \, \gamma^\mu \, q_j \Biggr)$$

32 DIS & DY data sets not affected

$$\frac{d\sigma}{d\hat{O}} = \frac{d\sigma_{\rm SM}}{d\hat{O}} + \sum_{i} \frac{d\tilde{\sigma}_{i}}{d\hat{O}} \frac{C_{i}}{\Lambda^{2}} + \sum_{i,j} \frac{d\tilde{\sigma}_{ij}}{d\hat{O}} \frac{C_{i}C_{j}}{\Lambda^{4}}$$

observable	μ_0	SM QCD	SM EW	SMEFT QCD	th. unc.
$t \bar{t} ext{ total}$	m_t	NNLO+NNLL	no	NLO	$\mu_{F,R}$ var.
$t\bar{t} p_T \text{ dist.}$	$m_T/2$	NNLO	NLO	NLO	$\mu_{F,R}$ var.
$t\bar{t} \ m_{t\bar{t}} \ { m dist.}$	$H_T/4$	NNLO(+NLP)	NLO	NLO	$\mu_{F,R}$ var.
$t\bar{t}$ 2D dist.	$H_T/4$	NNLO	no	NLO	no
inc. jet	$p_{T,j}$	NNLO	NLO	NLO	0.5% uncor.
dijet	m_{jj}	NNLO	NLO	NLO	0.5% uncor

Log-likelihood function learned by neural network

quality of agreement quantified by profiled log-likelihood function

$$\chi^2(\text{PDF}, \text{SMEFT}) = \sum_{i,j=1}^{N_{\text{pt}}} (T_i - D_i)(\text{cov}^{-1})_{ij} (T_j - D_j)$$

- uncertainties evaluated by Lagrange Multiplier (LM) scans [Pumplin et al, hep-ph/0008191]
- χ^2 functions are then modelled by NNs. [D. Liu et al., 2201.06586]

- training: 12000 PDF replicas with different α_s , m_t and Wilson coefficients
- validation: using another 4000 replicas
- allow efficient scan of the PDF-SMEFT parameter space

Joint fits of PDFs and C_{tq}^8

- fixing $\alpha_s(m_Z) = 0.118$, $m_t = 172.5 \text{ GeV}$
- 90% C.L. uncertainties given by CT18 tolerance criterion $\Delta \chi^2 + P \le 100$

+ approx. quartic shape for $\Delta\chi^2$ reflects quadratic SMEFT corrections $\sim \left(C_{tq}^8/\Lambda^2\right)^2$

Joint fits of PDFs and contact interaction

- LM scans for quark contact interaction $\frac{C_1}{\Lambda^2}o_1$
 - fixing $\alpha_s(m_Z) = 0.118$, $m_t = 172.5$ GeV

similar analysis: [CMS,2111.10431] see Katerina Lipka's talk

- mainly constrained by CMS 13 TeV inclusive jet data and CMS 8 TeV dijet data
- uncertainties underestimated for fixed PDF

	The second secon			
$ m TeV^{-2}$	nominal	CMS 8 dijet	CMS 8 jet	CMS 13 jet
PDF free	$-0.0015^{+0.0033}_{-0.0014}$	$-0.0022^{+0.0187}_{-0.0054}$	$-0.0009^{+0.0138}_{-0.0045}$	$-0.0013^{+0.0059}_{-0.0016}$
PDF fixed	$-0.0015^{+0.0024}_{-0.0014}$	$-0.0022^{+0.0180}_{-0.0051}$	$-0.0009^{+0.0131}_{-0.0049}$	$-0.0013^{+0.0026}_{-0.0015}$

Gluon PDF with/without SMEFT

ullet compare gluon PDF with/without SMEFT contributions from O_{tG} and O_1

- small (< 5%) deviation in the x > 0.2 region
- PDF uncertainties slightly enlarged by including $O_1,\,O_{tG}$ in the fit

Correlations between top/jet Wilson coefficients

* Simultaneous fits of PDFs, O_{tG} and O_1

• very weak correlations between C_1 and C_{tG}

TeV^{-2}	C_1, C_{tG} free	fix C_1	fix C_{tG}
C_1/Λ^2	$-0.0015^{+0.0033}_{-0.0014}$	0	$-0.0015^{+0.0033}_{-0.0014}$
C_{tG}/Λ^2	$-0.120^{+0.248}_{-0.309}$	$-0.117^{+0.247}_{-0.309}$	0

Correlations may strengthen for future experiments

* mimicking future improvements in theory/exp. precision: $\chi^2_{\text{top(jet)}} \rightarrow \text{weight} \times \chi^2_{\text{top(jet)}}$

+ ~10% underestimation in the uncertainty of C_{tG}/Λ^2 at the HL-LHC if PDF is fixed

Summary

- simultaneous SMEFT-PDF fit within CTEQ-TEA framework
 - SMEFT corrections with full PDF dependence calculated at NLO QCD
 - ML-based; allows rapid fit and Lagrange Multiplier scans
 - can be generalized to include more SMEFT parameters
- explore correlations between SMEFT and PDF
 - uncertainties of Wilson coefficients slightly underestimated with fixed PDF
 - find mild correlations between SMEFT and gluon PDF at large x
 - the correlations may increase with growing precision

Summary

- simultaneous SMEFT-PDF fit within CTEQ-TEA framework
 - SMEFT corrections with full PDF dependence calculated at NLO QCD
 - ML-based; allows rapid Lagrange Multiplier scans
 - can be generalized to include more SMEFT parameters
- explore correlations between SMEFT and PDF
 - uncertainties of Wilson coefficients slightly underestimated with fixed PDF
 - find mild correlations between SMEFT and gluon PDF at large x
 - the correlations may increase with growing precision

I am also working toward simultaneous SMEFT-PDF extraction within **xFitter**, a powerful open-source QCD fit framework.

backup slides

Impact of different tolerance criteria

• CTEQ criterion of $\Delta \chi^2 + P = 100$ is used in this work

Gluon PDF with/without SMEFT

ullet compare gluon PDF with/without SMEFT contributions from O_{tq}^8

- almost indistinguishable
- negligible upward shift smaller than 1% in the endpoint x regions
- ullet PDF uncertainties enlarged by 5% around x=0.03 by including O_{tq}^8 in the fit

Gluon PDF with/without SMEFT

compare gluon PDF with/without quark contact interaction C_1

• C_1 is moderately correlated to the gluon PDF at x > 0.1

Validating the NNs

