Full NNLO QCD corrections to diphoton production

IFIC - Universitat de Valencia

arXiv:2308.10885 Based on:

In collaboration with M. Becchetti, R. Bonciani, L. Cieri and F. Ripani

Federico Coro

Outline of the talk

Introduction

Motivations

Double Virtual Contribution

Form factors

Master Integrals

Hard Function

Final Results

Federico Coro

Motivations

- Diphoton is an experimentally clean final state
- QCD background for Higgs
- Important to misure the fundamental parameters within the Standard Model
- Search for new physics

State of the art

- Full NLO
- **QCD NNLO**

Form factors up to 3 loops

Massive Corrections

Computational pipeline

Federico Coro

Analytic Information: Canonical Basis, Boundary Conditions, Maximal Cut

Form factors

At any order in QCD perturbation theory, the amplitude can be decomposed as:

$$\mathcal{A}_{q\bar{q},\gamma\gamma}(s,t,m_t^2) = \sum_{i=1}^4 \mathcal{F}_i(s,t,m_t^2)\bar{v}(p2)\Gamma_i^{\mu\nu}u(p_1)\epsilon_{3,\mu}\epsilon_{4,\nu}$$

In dimensional regularisation:

$$\Gamma_1^{\mu\nu} = \gamma^{\mu} p_2^{\nu}, \ \Gamma_2^{\mu\nu} = \gamma^{\nu} p_1^{\mu}, \ \Gamma_3^{\mu\nu} = p_{3,\rho} \gamma^{\rho} p_1^{\mu} p_2^{\nu}, \ \Gamma_4^{\mu\nu} = p_{3,\rho} g^{\mu\nu}$$

The form factors admits a perturbative expansion:

$$\mathcal{F}_{i} = \mathcal{F}_{i}^{(0)} + \left(\frac{\alpha_{s}^{B}}{\pi}\right) \mathcal{F}_{i}^{(1)} + \left(\frac{\alpha_{s}^{B}}{\pi}\right$$

Massive contribution appears at $\mathcal{O}(\alpha_s^2)$:

$$\mathscr{F}_i^{(2)} = \delta_{kl} C_F (4\pi\alpha_{el})$$

Federico Coro

[F.Caola, A.Von Manteuffel, L.Tancredi]

 Q_q is the charge of light quark Q_t is the charge of heavy quark

Two-loop Feynman diagrams

 $q(p_1) + \bar{q}(p_2) \rightarrow \gamma(p_3) + \gamma(p_4)$ At partonic level the scattering process is:

External particles on-shell and the top quark running in the loop

Feynman diagrams generated with **FeynArts** [T.Hahn]

PLA

NPL

PLB

Master Integrals

PLA and PLB Master Integrals

NPL Master Integrals

Federico Coro

[M.Becchetti,R.Bonciani]

A.Von Manteuffel, L.Tancredi

Original MIs

Master Integrals

Federico Coro

Evaluation of the Master Integrals

The MIs are computed through the differential equations method:

PLA family:

$$d\underline{f}(\underline{x},\epsilon) = \epsilon dA(\underline{x})\underline{f}(\underline{x},\epsilon)$$

PLB family:

This topology contains only one different MIs from the other two topologies, which was computed analytically

Federico Coro

Canonical Logarithmic form! [J.M.Henn]

- Non linearizable square roots
- * Non trivial solution!
- Big expressions!

EPS-HEP2023

Evaluation of the Master Integrals

[A.Von Manteuffel, L.Tancredi]

Federico Coro

Two different subsets

- Non trivial solution!
- Nine square roots in the alphabet
- Integrals involving eMPLs kernels

Maximal Cut

The homogeneous part of the DEs contains elliptic functions

$$y_c^2 = (z_8 + t)(z_8 + s + t)$$

$$y^2 = \overline{x}_2(\overline{x}_2 - 1)(\overline{x}_2 - b_+)$$

[J.Broedel, C.Duhr, F.Dulat, B.Penante, L.Tancredi]

The elliptic curve y_c^2 degenerates to y in the forward limit t = 0

EPS-HEP2023

Generalised power series approach

Values at arbitrary phase-space points

Can be used to perform phenomenological studies

Equations for the unknown coefficients of the series

It doesn't depend on the function space, so it allows us to avoid elliptic integrals

EPS-HEP2023

Numerical evaluation of the Master Integrals

The numerical evaluation of the Master Integrals has been made with DiffExp [M.Hidding]

Several check for the numerical evaluation with AMFLow [X.Liu, Y.Ma]

Federico Coro

EPS-HEP2023

Hard Function

 $\mathcal{F}_{i}^{(2)}$ does not have IR poles!

After remove the UV poles, we can compute the NNLO Hard Function

In q_T - subtraction scheme:

The Hard function admit a perturbative expansion:

Federico Coro

Numerical evaluation of the Hard Function

A numerical grid has been prepared for all the MIs of the PLA and NPL, covering the $2 \rightarrow 2$ physical space:

$$s > 0$$
, $t = -\frac{s}{2}(1 - cos(\theta))$, $-s < t < 0$

 $-0.99 < cos(\theta) < +0.99$ 24 different values 8 GeV $<\sqrt{s} < 2.2 TeV$ 573 different values

DiffExp time for the $H_{NNLO}^{\gamma\gamma}$ MIs evaluation:

PLA Topology: 32 MIs in $\mathcal{O}(2.5h)$

NPL Topology: 36 MIs in $\mathcal{O}(10.5h)$

On a single core!

Federico Coro

Final Results

• $\sqrt{s} = 13 \ TeV$ $\clubsuit \quad p_{T_{\gamma}}^{Hard} \geq 40 \; GeV$ $\clubsuit \quad p_{T_v}^{Soft} \ge 30 \; GeV$ ♦ $|y_{\gamma}| < 2.37$ Excluding $1.37 < |y_{\gamma}| < 1.52$

[The ATLAS Collaboration]

EPS-HEP2023

Final Results

Invariant mass distribution of the Double-Real contribution to the NNLO fully massive result

Final Results

Invariant mass distribution of the one-loop massive contribution at NNLO

$$q\bar{q} \rightarrow \gamma\gamma g$$

EPS-HEP2023

Final Results

NNLO invariant mass distribution with full top quark mass depencence

Conclusions

We computed the massive two-loop form factors

Computation of the Massive Hard Function NNLO

We obtained the first phenomenological results for the full massive NNLO diphoton production

THANKS FOR YOUR ATTENTION!

EPS-HEP2023