Luminosity determination in *pp* collisions at $\sqrt{s} = 13.6$ TeV with the ATLAS detector

European Physical Society Conference on High Energy Physics (EPS-HEP), Hamburg, August 22, 2023 Cédrine Hügli (DESY) on behalf of the ATLAS Collaboration

What is luminosity and why is it important?

How often does a process happen?

What is the cross section of the process?

Luminosity in ATLAS

How is luminosity measured in ATLAS?

Detectors measure a quantity proportional to luminosity

LUCID

Track Counting (TC)

Calorimeter measurements

Luminosity in ATLAS

LUCID

- luminosity proportional to number of hits per bunch-crossing
- particle detection based on Cherenkov radiation
- per-bunch luminosity: yes

Track counting (TC)

- Inner Detector: luminosity proportional to the number of tracks per bunch-crossing
- per-bunch luminosity: yes but statistically limited

Calorimeter measurements

- LAr (ECAL and FCAL): luminosity proportional to total ionisation current
- Tile calorimeter: luminosity proportional to current drawn by PMT
- per-bunch luminosity: no, only bunch-integrated

Luminosity determination in 3 steps

Step 1 - Absolute luminosity calibration

van der Meer scans in special conditions

 \downarrow

Step 2 - Calibration transfer

calibration transfer from vdM conditions to physics conditions

 \downarrow

Step 3 - Long term stability

stability of the calibration over time

Run 2 luminosity paper: arXiv:2212.09379

Step 1 - Absolute luminosity calibration

Absolute luminosity calibration

L = instantaneous luminosity f_r = revolution frequency at LHC = 11.245 kHz μ_{vis} = visible interaction rate of a given algorithms/luminometer σ_{vis} = visible pp cross section of that algorithm/luminometer

> n_i = number of protons in the bunch of beam i Σ_k = convolved beam width in plane k

$$2\pi \sum_{x} \sum_{y} \mu_{vis}$$
$$n_1 n_2 f_r$$

What are van der Meer scans?

What are van der Meer scans?

How to calibrate the absolute luminosity?

Rates and beam-beam separations need to be corrected for several effects before extracting a precise σ_{vis}

vdM methodology assumes that the beams are factorisable in x and y plane:

 $\mu_{vis}(x, y) = \mu_{vis}(x)\mu_{vis}(y)$

plot rate vs separation $\downarrow \downarrow$ make a fit $\downarrow \downarrow$ extract Σ_x , Σ_y and μ_{vis}^{max} $\downarrow \downarrow$ $\sigma_{vis} = \frac{2\pi \Sigma_x \Sigma_y \mu_{vis}^{max}}{n_1 n_2 f_r}$

van der Meer scans - corrections

• Non-factorisation correction

- Length Scale Calibration correction
- Beam-Beam corrections
- Ghost and satellite charge corrections
- Background subtraction
- Orbit Drift Correction
- Emittance growth correction
- Bunch current offset

ze of the correction in 2022 S

van der Meer scans - non-factorisation effects

Preliminary van der Meer scan uncertainty 2022

Dominant systematic uncertainties to the van der Meer analysis for 2022

Non-factorisation effects

Bunch-by-bunch consist

Differences between alg

Other contributions < 0.4

Subtotal vdM calibrati

Non-factorisation is also the dominant systematic uncertainty!

S	1.1%
tency	0.5%
orithms	0.4%
4%	0.7%
on	1.5%

Step 2 - Calibration transfer

Calibration transfer

- trains of high intensity bunches
 - high pileup
 - high number of bunches
- with crossing angle

Calibration transfer

- Track-counting is calibrated to LUCID luminosity during vdM quiet periods
- Assumption: track-counting is perfectly linear from vdM conditions to high μ physics regime
- Long physics runs with large μ range (~30-60) are used
- LUCID is corrected for each run and each luminosity block (LB) in the run

Calibration transfer uncertainty

- Assumption: track-counting is perfectly linear from vdM conditions to high μ physics regime
- Assumption cross-checked with calorimeter measurements
- Calibration transfer uncertainty: deviation from this assumption
- Very preliminary calibration transfer uncertainty for 2022: 1.50%

Step 3 - Long term stability

Long term stability uncertainty

Motivation

How it is done

- How stable is the luminosity calibration over different runs in a year?
- Are the ratios between different algorithms/luminometers stable over time?
- Check how well the different calorimeter measurements agree with LUCID over the different runs in the year
- Long term stability uncertainty: largest mean deviation over all independent luminometers

Luminosity fraction

Summary of the preliminary luminosity determination in 2022

Step 1 - Absolute luminosity calibration 1.5% \downarrow **Step 2 - Calibration transfer** 1.5% \downarrow **Step 3 - Long term stability (and** calibration anchoring) 0.7% \downarrow Total 2.2%

Outlook

2023 luminosity calibration ongoing!

- Run 2 luminosity paper: <u>arXiv:2212.09379</u>
- Beam-Beam Effects and luminosity calibration paper (Run 2): <u>arXiv:2306.10394</u>
- Run 3 2022 luminosity plots: <u>ATL-DAPR-PUB-2023-001</u>
- Run 3 ttbar cross section result: <u>TOPQ-2023-21</u>
- Other EPS talks:
- EPS talk about Run2 luminosity determination: <u>Rachel Rosten's talk</u> (Tue 8:30)
- EPS talk about Run3 ttbar cross section measurement: <u>Evan Ranken's talk</u> (Tue 9:50) \bullet
- Plots:
- Cross section plot: <u>ATL-PHYS-PUB-2022-009</u>
- Run 3 ttbar cross section plot: <u>arXiv:2308.09529</u>
- Pileup plot: <u>ATLASPublicLuminosity</u>
- **ATL-DAPR-PUB-2023-001**
- Emittance change plot 2018, 2D vdM scan plots: <u>PLOT-LUMI-2023-05</u>

References

• EPS talk about how accelerator physics impacts van der Meer calibrations: <u>Witold Kozanecki's talk</u> (Wed 8:50)

• Calibration transfer plot, emittance change plot 2022, long term stability plot and systematic uncertainty table:

Questions?

