Automated calculation of jet fragmentation at NLO in QCD

combining Monte Carlo generators and fragmentation functions

Xiao-min Shen

Shanghai Jiao Tong University and DESY

in collaboration with ChongYang Liu, Bin Zhou, Jun Gao (arXiv:2305.14620)

EPS-HEP 2023, 25 August 2023

The Fragmentation Functions (FFs)

- counterpart of PDFs in the final state
- * $D_{h/i}(z)$: intuitive probabilistic interpretation

- number density of collinear fragmentation of
- massless unpolarized parton *i*
- + into an unpolarized hadron h with momentum fraction z

- sufficiently inclusive observables
 - $e^+e^- \rightarrow h + X$ (Single Inclusive Annihilation): $\hat{\sigma} \otimes FF$
 - $e^-p \rightarrow e^- + h + X$ (Semi-Inclusive DIS): $\hat{\sigma} \otimes PDF \otimes FF$
 - *p p* → *h*+*X*:
 $\hat{\sigma} \otimes \text{PDF} \otimes \text{PDF} \otimes \text{FF}$

Example: Single Inclusive Annihilation

◆ energy fraction x_h of hadron h in SIA $e^+e^- \rightarrow h+X$:

divergence of the coeff. functions absorbed by the bare FFs

$$\frac{d\sigma}{dx_h} = \sum_i C_i^0(\epsilon) \otimes D_{h/i}^0(\epsilon) = \sum_i C_i(\alpha_s(\mu_R), \mu_D) \otimes D_{h/i}(\mu_D)$$
$$\frac{D_{h/i}^0(x, \epsilon)}{D_{h/i}^0(x, \epsilon)} \equiv D_{h/i}(x, \mu_D) + \left(\frac{\mu_R^2}{\mu_D^2}\right)^{\epsilon} \frac{\alpha_s(\mu_R)}{2\pi} \frac{1}{\epsilon} P_{ji}^{+(0)} \otimes D_{h/j}(x, \mu_D)$$

evolution equation

$$\frac{d}{d\ln\mu_D^2} D_{h/i}(z,\mu_D) = \frac{\alpha_s(\mu_R)}{2\pi} \sum_j \int_z^1 \frac{dy}{y} P_{ji}^+(y) D_{h/j}\left(\frac{z}{y},\mu_D\right)$$

Motivation: Combine MC generators and FFs

- analytical calculation of the coefficient (structure) functions
 - available hard processes are limited, usually implemented case-by-case
 - analytical results with various selection conditions may not be available
- this work:
 - a new prescription to combine general-purpose MC generators and FFs
 - implemented with MG5_aMC@NLO
 - * automated NLO calculation for various processes
 - * cuts, jet reconstruction are possible

 \rightarrow deal with IR divergence in 4-dim spacetime

Local subtraction with one identified hadron at NLO

Local subtraction for IRC safe observable at NLO QCD

$$\begin{aligned} \frac{d\,\sigma}{d\,F} &= \int d\,\mathrm{PS}_m\left[|M|_{B,m}^2 + |M|_{V,m}^2 + |\tilde{\mathcal{I}}|_m^2 \right] \delta\left(\hat{F}(p_m; f_m) - F\right) \\ &+ \int d\,\mathrm{PS}_{m+1}\left[|M|_{R,m+1}^2 \delta\left(\hat{F}(p_{m+1}; f_{m+1}) - F\right) - |\mathcal{I}|_{m+1}^2 \delta\left(\hat{F}(\tilde{p}_m; \tilde{f}_m) - F\right) \right] \end{aligned}$$

* With one identified hadron, e.g. hadron p_T , naively

$$\begin{split} \frac{d\,\sigma}{d\,p_{T,h}} &= \int d\,x \int d\,\mathrm{PS}_m \left[|M\,|_{B,m}^2 + |M\,|_{V,m}^2 + |\tilde{\mathcal{I}}\,|_m^2 \right] \sum_{i=1}^m \,\delta\left(p_{T,h} - x\,p_{T,i}\right) D_{h/i}^0(x) \\ &+ \int dx \int d\,\mathrm{PS}_{m+1} \Bigg[|M\,|_{R,m+1}^2 \sum_{i=1}^{m+1} \,\delta\left(p_{T,h} - x\,p_{T,i}\right) D_{h/i}^0(x) - |\mathcal{I}\,|_{m+1}^2 \sum_{\tilde{i}=1}^m \,\delta\left(p_{T,h} - x\,\tilde{p}_{T,\tilde{i}}\right) D_{h/\tilde{i}}^0(x) \Bigg] . \end{split}$$

- Problem: collinear divergences not locally cancelled
 - * additional subtraction terms, or
 - * in this work: **slicing of phase space**

Framework: local subtraction + PS slicing

* slicing of phase space: $dPS_{m+1} = dPS_{m+1}\Theta(\Delta R_{kl} - \lambda) + dPS_{m+1}\Theta(\lambda - \Delta R_{kl})$

$$\sum_{\{kl\}} \int dx \int dPS_{m+1} \Theta \left(\lambda - \Delta R_{kl}\right) \left[|M|_{R,m+1}^2 \sum_{i=1}^{m+1} \delta \left(p_{T,h} - x \, p_{T,i}\right) D_{h/i}^0(x) - |\mathcal{I}|_{m+1}^2 \sum_{\tilde{i}=1}^m \delta \left(p_{T,h} - x \, \tilde{p}_{T,\tilde{i}}\right) D_{h/\tilde{i}}^0(x) \right] \equiv |\tilde{\mathcal{J}}|_m^2(\lambda)$$

- in collinear region: the matrix elements factorize
- factorize the phase space and integrate analytically
- arrive at a rather compact form

FMNLO: interfaced to MG5_aMC@NLO

• The master formula for x_h distribution in SIA

$$\frac{d\,\sigma}{d\,x_{h}} = \sum_{i=1}^{m} \int \frac{d\,x_{i}}{x_{i}} \left[\frac{d\,\sigma_{m}^{(0)}}{d\,x_{i}} + \frac{d\,\tilde{\sigma}_{m}^{(1)}}{d\,x_{i}} \right] D_{h/i}(x_{h}/x_{i},\mu_{D}) + \sum_{i=1}^{m+1} \int \frac{d\,x_{i}}{x_{i}} \left[\frac{d\,\tilde{\sigma}_{m+1}^{(1)}}{d\,x_{i}} \right] D_{h/i}(x_{h}/x_{i},\mu_{D}) + \sum_{i=1}^{m} \int \frac{d\,x_{i}}{x_{i}} \left[\frac{d\,\tilde{\sigma}_{m+1}^{(1)}}{d\,x_{i}} \right] D_{h/i}(x_{h}/x_{i},\mu_{D}) + \tilde{D}_{h/i}(x_{h}/x_{i},\mu_{D}))$$

FMNLO: our framework interfaced to MG5_aMC@NLO

$$\frac{d\sigma}{dx_h} = \sum_{i=q,\bar{q},g} \sum_{k=1}^{N_x} \sum_{l=1}^{N_Q} \left[G(x_h)_{k,l}^i D_{h/i}^{k,l} + \bar{G}(x_h)_{k,l}^i (\bar{D}_{h/i}^{k,l} + \tilde{D}_{h/i}^{k,l}) \right]$$

- partonic ME: calculated once and stored using histograms in MG5_aMC@NLO
- FFs are approximated by an interpolation on a 2D grid of (x, μ_D)
- evolution and convolution: HOPPET

Validation of FMNLO

8

NLO fit of charged hadron FFs using LHC data

* measurements of unidentified charged hadron (π^{\pm}, K^{\pm} , etc.) at the LHC

Experiments	lum.	observables	N_{pt}	Range	tagging
CMS 5.02 TeV	27.4 pb^{-1}	$1/N_j dN_{trk}/d\xi_T^\gamma$	8(5)	$\xi_T^{\gamma} \in [0.5, 4.5]$	γ
ATLAS 5.02 TeV	25 pb^{-1}	$1/N_j dN_{trk}/dp_{T,h}$	10(7)	$p_{T,h} \in [1, 100] \text{GeV}$	γ
CMS 5.02 TeV	320 pb^{-1}	$1/N_Z dN_{trk}/dp_{T,h}$	14(11)	$p_{T,h} \in [1, 30] \text{GeV}$	Z
ATLAS 5.02 TeV	160 pb^{-1}	$1/N_Z d^2 N_{trk}/d p_{T,h} d\Delta\phi$	15(9)	$p_{T,h} \in [1, 60] \text{GeV}$	Z
ATLAS 13 TeV	$33 { m fb^{-1}}$	$1/N_j dN_{trk}/d\zeta$ (central)	261(143)	$\zeta \in [0.002, 0.67]$	dijet
ATLAS 13 TeV	$33 { m fb^{-1}}$	$1/N_j d N_{trk}/d \zeta$ (forward)	261(143)	$\zeta \in [0.002, 0.67]$	dijet

- + exclude data points with small jet p_T or small hadron momentum fraction
- parametrization of the FFs to unidentified charge hadrons

 $x D_{h/i}(x, Q_0 = 5 \text{GeV}) = a_{i,0} x^{\alpha_i} (1-x)^{\beta_i} (1+a_{i,1} x + a_{i,2} x^2)$

- assume FFs equal for all (anti-)quarks
- 10 free parameters in total

NLO fit of FFs using LHC data

Search for the best fit with MINUIT

$$\chi^{2}(\text{FFs}) = \sum_{i,j=1}^{N_{\text{pt}}} (T_{i} - D_{i}) [\text{cov}^{-1}]_{ij} (T_{j} - D_{j})$$

- assuming theoretical uncertainties fully correlated within each subset of the data
- + nominal scale choices: $\mu_F = \mu_R = \sum m_T/2, \mu_D = \max\{p_T\}$

Experiments	N_{pt}	$\chi^2(/N_{pt}),{f NLO}$	$\chi^2(/N_{pt}), \mathbf{NLO}_{w/o \ th.}$	$\chi^2(/N_{pt}), \mathbf{LO}_{w/o th.}$
$\mathrm{CMS}~\gamma$	5	11.3(2.27)	28.8(5.76)	48.5(9.71)
ATLAS γ	7	17.8(2.55)	18.8(2.68)	40.5(5.78)
${\rm CMS}\ Z$	11	16.2(1.47)	24.8(2.25)	906.9(82.4)
ATLAS Z	9	47.5(5.27)	48.1(5.34)	348.8(38.8)
ATLAS central jets	141	98.1(0.69)	112.9(0.79)	833.7(5.83)
ATLAS froward jets	141	76.4(0.53)	98.0(0.68)	855.6(5.98)
Total	318	267.4(0.84)	331.2(1.04)	3034.0(9.54)

- good agreement to ATLAS dijet measurement
- + large χ^2 for ATLAS Z boson measurement

The quark and gluon FFs

FFs to unidentified charged hadrons (parton $\rightarrow \pi^{\pm}, K^{\pm}, \cdots$) *

$$u \to \pi^{\pm}, K^{\pm}, \cdots$$

$$g \to \pi^{\pm}, K^{\pm}, \pi^{\pm}, \pi^{\pm}$$

+ error criterions $\Delta \chi^2 = 1$

- up quark FF : good agreement in 0.1 < x < 0.3; large deviation in small x region
- gluon FF: notable disparities

work

 10^{0}

Summary

- a new prescription combining general-purpose MC generators and FFs at NLO QCD
 - based on local subtraction + phase space slicing
 - + has been realized with MG5_aMC@NLO \rightarrow FMNLO is publicly available
 - suitable for frag. measurements with cuts, tagging, jet reconstruction
- * a **preliminary** fit of unidentified charged hadrons FFs
 - include new LHC data: high energy/luminosity; with isolated photon or Z
- future improvements
 - include semi-inclusive DIS (SIDIS) at NLO
 - fit of all quark flavor FFs with more SIA, SIDIS, pp data

Summary

- a new prescription combining general-purpose MC generators and FFs at NLO QCD
 - based on local subtraction + phase space slicing
 - + has been realized with MG5_aMC@NLO \rightarrow FMNLO is publicly available
 - suitable for frag. measurements with cuts, tagging, jet reconstruction
- * a **preliminary** fit of unidentified charged hadrons FFs
 - include new LHC data: high energy/luminosity; with isolated photon or Z

Thank you!

- future improvements
 - include semi-inclusive DIS (SIDIS) at NLO
 - fit of all quark flavor FFs with more SIA, SIDIS, pp data

backup slides

NLO fit of FFs for LHC data

quark	α	eta	a_0	a_1	a_2	$\langle x \rangle$
best-fit	0.375	2.166	6.016	-2.292	2.083	0.586
unc.(scan)	$+0.03 \\ -0.03$	$^{+0.11}_{-0.12}$	$^{+0.55}_{-0.56}$	$^{+0.10}_{-0.10}$	$^{+0.18}_{-0.20}$	
unc.(Hessian)	$+0.03 \\ -0.03$	$^{+0.09}_{-0.10}$	$^{+0.45}_{-0.44}$	$^{+0.08}_{-0.08}$	$^{+0.16}_{-0.16}$	$+0.007 \\ -0.008$
gluon	α	eta	a_0	a_1	a_2	$\langle x angle$
best-fit	0.710	10.224	44.080	-3.527	11.786	0.510
unc.(scan)	$+0.09 \\ -0.16$	$^{+1.09}_{-0.91}$	$+19.54 \\ -13.54$	$^{+0.95}_{-0.85}$	$+3.54 \\ -3.60$	_
unc.(Hessian)	$+0.09 \\ -0.10$	$^{+0.91}_{-0.93}$	$^{+18.9}_{-14.1}$	$^{+0.92}_{-0.83}$	$+3.32 \\ -3.52$	$+0.011 \\ -0.012$

u+ū	$d + \bar{d}$	g
-----	---------------	---

e190408878pppt50 - e190408878pppt30 - e200809811pppt30 - e210304377pppt30 - e190408878pppt20 -	0.40	0.51			011	0.00	10
e190408878pppt30 - e200809811ppt30 - e210304377pppt30 - e190408878pppt20 -	0.40				.211	0.23	10
e200809811pppt30 - e210304377pppt30 - e190408878pppt20 -		6		0.191		0.353	
e210304377pppt30 - e190408878pppt20 - e200809811pppt15 -	0.283		0.238		0.327		
e190408878pppt20 -	0.301		0.247		0.301		
e200809811pppt15	0.318		0.162		0.47	1	
ezoooosorrphhris	0.223	0.192			0.455		
e180104895pppt80 -		0.567			0.115 0.	115	
e190210007pppt63 -		0.617			0.108	0.13	
609254ppforpt2000 -		0.609			0.186		0.185
509254ppcenpt2000 -		0.508		0.	199	0.26	2
609254ppforpt1600 -		0.556			0.187	0	.23
509254ppcenpt1600 -	0.4	35		0.192		0.331	
609254ppforpt1400 -		0.522		(.186	0.26	1
609254ppcenpt1400 -	0.389		0.	184		0.377	
609254ppforpt1200 -		0.489		0.18	5	0.29	
09254ppcenpt1200 -	0.349		0.174		0.4	421	
609254ppforpt1000 -	0.	457		0.181		0.321	
09254ppcenpt1000 -	0.304		0.165		0.468		
0609254ppforpt900 -	0.4	31		0.178		0.347	
609254ppcenpt900 -	0.277	0.1	57		0.496		
0609254ppforpt800 -	0.4			0.176		0.367	
609254ppcenpt800 -	0.254	0.148			0.525		
0609254ppforpt700 -	0.386		0.1	73		0.391	
609254ppcenpt700 -	0.231	0.141			0.551		
0609254ppforpt600 -	0.358		0.168		0.	418	
609254ppcenpt600 -	0.208	0.132	0.164		0.579		
0609254ppforpt500 -	0.322	0.100	0.164		0.45	4	
609254ppcenpt500 -	0.185	0.123	- 4	0	.608		
0609254ppforpt400 -	0.282	0.1	.54	0.6	0.499		
609254ppcenpt400 -	0.16 0.1	.13	0 171	0.6	39	120	
e11095816pppt400 -	0.347		0.1/1		0.4	+29	
180505424pppt316 -	0.335	0.1	0.103		0.495	+0	
e11095816pppt310 -	0.200	0.142	1.37		0.495		
600254ppiorpi300 -	0 135 0 1	0.142		0.672	0.55		
o11005816pppt260	0.133	0 144		0.072	0.545		
180505424pppt251	0.241	0.144	152		0.493		
e11095816pppt231	0.205	0.132	1.52		0.587		
0609254ppforpt200 -	0.179	0.123		0	616		
609254ppcenpt200 -	0.107 0.0864			0.71			
180505424pppt200 -	0.252	0.141			0.539		
e11095816pppt160 -	0.166 0.	117		0.0	535		
180505424pppt158 -	0.214	0.13			0.582		
180505424pppt126	0.182	0.118		0	.622		
e11095816pppt110 -	0.128 0.0993			0.685			
e11095816pppt10	0.103 0.0853			0,721			
e11095816pppt60 -	0.0865 0.075			0.747			
e11095816pppt40 -	0.0723 0.0655			0.77			

e20080981 e21030437 e19040887 e20080981 e18010489 e19021000 e190609254ppf e190609254ppce e190609254ppf e190609254ppce e190609254ppf e190609254ppce e190609254ppf e190609254ppce e190609254ppf e190609254ppce e190609254pp e11095816 e180505424 e1109581 e190609254pp e190609254pp e11095816 e180505424 e1109581 e190609254pp e190609254pp e180505424 e1109581 e180505424 e180505424 e11095816 e1109581

16

Applications: compared with LHC measurements

