

Latest Three-Flavor Neutrino Oscillation Results from NOvA

Martin J. Frank University of South Alabama on behalf of the NOvA Collaboration

> EPS-HEP 2023 Hamburg, Germany

August 22nd, 2023

• NOvA:

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: monoenergetic beam (2 GeV)
- v_e Appearance

 $\begin{array}{l} P(\nu_{\mu} \rightarrow \nu_{e}) \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) \end{array} = f(\theta_{13}, \theta_{23}, \delta_{\rm CP}, {\rm mass\ hierarchy}, \ldots) \end{array}$

- measure $\theta_{13}, \theta_{23}, \Delta m^2_{32}$
- measure δ_{CP} CP-violating phase angle
- resolve mass hierarchy
- resolve θ_{23} octant

• NOvA:

Martin Frank

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: monoenergetic beam (2 GeV)
- v_e Appearance (and v_{μ} Disappearance)

 $\begin{array}{l} P(\nu_{\mu} \rightarrow \nu_{e}) \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) \end{array} = f(\theta_{13}, \theta_{23}, \delta_{\rm CP}, \text{mass hierarchy}, \ldots) \end{array}$

• Physics Goals:

- measure $\theta_{13}, \theta_{23}, \Delta m^2_{32}$
- measure δ_{CP} CP-violating phase angle
- resolve mass hierarchy
- resolve θ_{23} octant

 Δm_{itm}^2

• NOvA:

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: monoenergetic beam (2 GeV)
- v_e Appearance (and v_{μ} Disappearance)

 $\begin{array}{l} P(\nu_{\mu} \rightarrow \nu_{e}) \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) \end{array} = f(\theta_{13}, \theta_{23}, \delta_{\rm CP}, \text{mass hierarchy}, \ldots) \end{array}$

Ve

- measure $\theta_{13}, \theta_{23}, \Delta m^2_{32} \bullet v_{\mu}$
- measure δ_{CP}
 CP-violating phase angle
- resolve mass hierarchy
- resolve θ_{23} octant

• NOvA:

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: monoenergetic beam (2 GeV)
- v_e Appearance (and v_{μ} Disappearance)

 $\begin{array}{l} P(\nu_{\mu} \rightarrow \nu_{e}) \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) \end{array} = f(\theta_{13}, \theta_{23}, \delta_{\rm CP}, \text{mass hierarchy}, \ldots) \end{array}$

 \mathbf{V}_{e}

- measure $\theta_{13}, \theta_{23}, \Delta m^2_{32} = v_{\mu}$
- measure δ_{CP}
 CP-violating phase angle
- resolve mass hierarchy
- resolve θ_{23} octant

• NOvA:

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: monoenergetic beam (2 GeV)
- v_e Appearance (and v_{μ} Disappearance)

 $\begin{array}{l} P(\nu_{\mu} \rightarrow \nu_{e}) \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) \end{array} = f(\theta_{13}, \theta_{23}, \delta_{\rm CP}, \text{mass hierarchy}, \ldots) \end{array}$

- measure $\theta_{13}, \theta_{23}, \Delta m^2_{32}$
- measure δ_{CP} CP-violating phase angle
- resolve mass hierarchy
- resolve θ_{23} octant

• NOvA:

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: monoenergetic beam (2 GeV)
- v_e Appearance (and v_{μ} Disappearance)

 $\begin{array}{l}
P(\nu_{\mu} \to \nu_{e}) \\
P(\nu_{\mu} \to \nu_{\mu}) = f(\theta_{13}, \theta_{23}, \delta_{\rm CP}, \text{mass hierarchy}, \ldots)
\end{array}$

• Physics Goals:

- measure $\theta_{13}, \theta_{23}, \Delta m^2_{32}$
- measure δ_{CP} CP-violating phase angle
- resolve mass hierarchy
- resolve θ_{23} octant

Beyond Oscillation Physics

- Non-Standard Interactions
- Neutrino Cross Sections
- Sterile Neutrinos
- Dark Matter
- Magnetic Monopoles
- Supernova
- And More!

• NOvA:

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: monoenergetic beam (2 GeV)
- v_e Appearance (and v_{μ} Disappearance)

 $\begin{array}{l} P(\nu_{\mu} \rightarrow \nu_{e}) \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) \end{array} = f(\theta_{13}, \theta_{23}, \delta_{\rm CP}, \text{mass hierarchy}, \ldots) \end{array}$

T03: Barnali Brahma Friday 9:30 am Room O221, East Wing

T10: Martin Frank Monday 10:00 am Hörsaal A

Beyond Oscillation Physics

- Non-Standard Interactions
 Neutrino Cross Sections
 Sterile Neutrinos
- **o** Dark Matter
- Magnetic Monopoles
- Supernova
- And More!

Martin Frank

- Using the oscillation equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Here is an example measurement NOvA might make.

- Using the oscillation equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Here is an example measurement NOvA might make.

<u>Baseline (L = 810 km)</u>

The neutrino beam travels from Fermilab to Ash River, MN through the earth's crust.

Energy (E_v = 2 GeV)

We can achieve a narrowly distributed neutrino energy by placing the detectors 14.6 mrad off the beam axis. This is also the $v_{\mu} \rightarrow v_{e}$ oscillation peak.

Protons on Target (POT)

13.6 x 10^{20} POT: neutrino mode 12.5 x 10^{20} POT: antineutrino mode

Martin Frank

<u>Baseline (L = 810 km)</u>

The neutrino beam travels from Fermilab to Ash River, MN through the earth's crust.

Energy (E_v = 2 GeV)

We can achieve a narrowly distributed neutrino energy by placing the detectors 14.6 mrad off the beam axis. This is also the $v_{\mu} \rightarrow v_{e}$ oscillation peak.

Protons on Target (POT)

13.6 x 10^{20} POT: neutrino mode 12.5 x 10^{20} POT: antineutrino mode

<u> Baseline (L = 810 km)</u>

The neutrino beam travels from Fermilab to Ash River, MN through the earth's crust.

Energy ($E_v = 2 \text{ GeV}$)

We can achieve a narrowly distributed neutrino energy by placing the detectors 14.6 mrad off the beam axis. This is also the $v_{\mu} \rightarrow v_{e}$ oscillation peak.

Protons on Target (POT)

13.6 x 10^{20} POT: neutrino mode 12.5 x 10^{20} POT: antineutrino mode

<u>Baseline (L = 810 km)</u>

The neutrino beam travels from Fermilab to Ash River, MN through the earth's crust.

Energy ($E_v = 2 \text{ GeV}$)

We can achieve a narrowly distributed neutrino energy by placing the detectors 14.6 mrad off the beam axis. This is also the $v_{\mu} \rightarrow v_{e}$ oscillation peak.

Protons on Target (POT)

13.6 x 10^{20} POT: neutrino mode 12.5 x 10^{20} POT: antineutrino mode

Ν-

W

- We want to detect electron neutrinos (v_e):
 - This requires a large detector mass and good electron identification.
- NOvA is a rectangular tracking calorimeter.
 - low Z materials: PVC extrusions filled with liquid scintillator • radiation length ~ 40 cm, Molière radius ~ 11 cm
 - provides many samples per radiation length (differentiate e⁻ and π^0)
 - each extrusion contains one wavelength-shifting fiber

charged-current (CC)

interaction

N-

Ŵ

- We want to detect electron neutrinos (v_e):
 - This requires a large detector mass and good electron identification.
- NOvA is a rectangular tracking calorimeter.
 - low Z materials: PVC extrusions filled with liquid scintillator • radiation length ~ 40 cm, Molière radius ~ 11 cm • provides many samples per radiation length (differentiate e⁻ and π^0)
 - each extrusion contains one wavelength-shifting fiber
 - ends of fiber read out by avalanche photo-diode (APD)

charged-current (CC)

interaction

Ν-

Ŵ

- We want to detect electron neutrinos (v_e):
 - This requires a large detector mass and good electron identification.
- NOvA is a rectangular tracking calorimeter.
 - low Z materials: PVC extrusions filled with liquid scintillator • radiation length ~ 40 cm, Molière radius ~ 11 cm • provides many samples per radiation length (differentiate e⁻ and π^0)
 - each extrusion contains one wavelength-shifting fiber
 - ends of fiber read out by avalanche photo-diode (APD)

charged-current (CC)

interaction

Simulated Event Display

- 1 km downstream from NuMI target
- 105 m underground
- 300 tons
- 4 m × 4 m × 15 m
- Instrumented with 20k channels
- Several neutrino interactions per second
- Few cosmic ray muons per second

Far Detector in Ash River, MN

- 810 km downstream from NuMI target
- On the surface
- 14,000 tons
- $15 \text{ m} \times 15 \text{ m} \times 60 \text{ m}$
- Instrumented with 344k channels
- Few neutrino interactions per year
- ~130,000 cosmic ray muons per second

Near Detector Event Display

Martin Frank

Far Detector Event Display

Martin Frank

Time Zoom on NuMI Beam Pulse

Martin Frank

Close-Up of Neutrino Interaction

Martin Frank

Neutrino Analysis

Alternative statistical treatment

- The neutrino counts are identical to the ones from Phys. Rev. D 106, 032004 (2022).
 - Frequentist measurement with Feldman-Cousins corrections
- We re-analyzed this data using a Bayesian Markov Chain Monte Carlo.
 - Expand measured neutrino oscillation parameters
 - Direct θ_{13} determination using NOvA only
 - Measure Jarlskog invariant (CP-violation parameter)
- Some vocabulary:
 - Prior: assumed probability distribution of input
 - Posterior: probability distribution of desired output

Far Detector Neutrino Prediction

- We use a data-driven technique to extrapolate the neutrino events in the near detector to the far detector:
 - 1. Estimate true energy distribution of near detector events
 - 2. Multiply by expected far/near event ratio and oscillation probability
 - 3. Convert far detector true energy into reconstructed energy

- Muon neutrino event counts
- Neutrino beam (left) $13.6 \times 10^{20} \text{ POT}$
- Antineutrino beam (right) $12.5 \times 10^{20} \text{ POT}$
- Note the dip in the energy spectrum indicating the disappearance of muon neutrinos

- Muon neutrino event counts
- Neutrino beam (left) $13.6 \times 10^{20} \text{ POT}$
- Antineutrino beam (right) $12.5 \times 10^{20} \text{ POT}$
- Note the dip in the energy spectrum indicating the disappearance of muon neutrinos

- Muon neutrino event counts
- Neutrino beam (left) $13.6 \times 10^{20} \text{ POT}$
- Antineutrino beam (right) $12.5 \times 10^{20} \text{ POT}$
- Note the dip in the energy spectrum indicating the disappearance of muon neutrinos

Electron Neutrino Events

- Electron neutrino event counts
- Neutrino beam (left) $13.6 \times 10^{20} \text{ POT}$
- Antineutrino beam (right) $12.5 \times 10^{20} \text{ POT}$
- Samples divided into three Particle ID (PID) categories:
 - High, Low, Peripheral

Electron Neutrino Events

- Electron neutrino event counts
- Neutrino beam (left) $13.6 \times 10^{20} \text{ POT}$
- Antineutrino beam (right) $12.5 \times 10^{20} \text{ POT}$
- Samples divided into three Particle ID (PID) categories:
 - High, Low, Peripheral

- Weak preference for normal ordering
- Weak preference for upper octant of θ_{23}

- Weak preference for normal ordering
- Weak preference for upper octant of θ_{23}

• Weak preference for normal ordering

• Weak preference for upper octant of θ_{23}

Martin Frank

Martin Frank

Martin Frank

• We measure a small neutrino-antineutrino asymmetry.

- Weak preference for normal ordering
- Weak preference for upper octant of θ_{23}
- We can measure θ_{13} using NOvA only.
 - Without reactor constraint

$$\sin^2(2\theta_{13}) = 0.085^{+0.020}_{-0.016}$$

- Weak preference for normal ordering
- Weak preference for upper octant of θ_{23}
- $J \equiv s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta \ \text{using}$
 - Without reactor constraint
 - $\sin^2(2\theta_{13}) = 0.085^{+0.020}_{-0.016}$
 - Jarlskog invariant:
 - J = 0: CP conserved
 - $J \neq 0$: CP violated

Martin Frank

 \neq

Systematic Uncertainties

• Several systematic uncertainties were considered:

• We are still limited by statistics.

• Largest systematic uncertainties addressed by Test Beam:

Martin Frank

- NOvA is expected to run until 2026.
- Significance of discovering CP violation (left)
- Significance of resolving the mass ordering (right)
- Joint analysis between NOvA and T2K is underway.

• Stay tuned for our next results with more exposure and the T2K/NOvA joint analysis.

• Thanks to the NOvA Collaboration and our funding agencies!

>266 scientists and engineers from 49 institutions from 8 countries

BACK-UP SLIDES

Live Detector Activity

Martin Frank

Non-Standard Interactions

Where $\varepsilon = 1 \rightarrow$ same size as MSW effect Assume all NSI comes from electrons and correct if theory says up or down quark.