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Introduction
1 Jiangmen Underground Neutrino Observatory

(JUNO):
• multipurpose experiment;
• 53 km away from 8 reactor cores in China
• ∼650-meter deep underground
• data taking expected in ∼2024

2 The main goals of JUNO:
• neutrino mass ordering (3σ in 6 years)
• †precise measure of oscillation parameters
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3 The Central Detector:
• detection channel: νe + p → e++n
• deposited energy converts to optical light
• the largest liquid scintillator detector: 20 kt
• 77.9% photo-coverage by photo-multiplier tubes

(PMTs): ∼18k 20” (LPMT), ∼26k 3” (SPMT)

†see poster by V. Cerrone: Prospects for Oscillation Physics in the JUNO Experiment
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Problem statement
Charge FHT Edep = 4.021 MeV
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An example of a positron event with deposited energy ∼4 MeV. The grey sphere — the primary vertex.
Input information:

Charge at PMT First Hit Time (FHT) at PMT PMT position
We want to reconstruct:

Deposited energy Edep with resolution < 3% @ 1 MeV

Data description
To train a model and to evaluate model performance we prepared two datasets generated by the full detector Monte Carlo method
using the official JUNO software:

1 Training dataset:
• 2.25 million positron events
• uniformly distributed in kinetic energy Ekin

• uniformly spread in the volume of the central detector
• Ekin ∈ [0,10]MeV. Edep = Ekin +1.022 MeV

2 Testing dataset:
• subsets with discrete kinetic energies
• 0, 0.1, 0.3, 0.6, 1, 2, ..., 10 [MeV]
• uniform spatial distribution
• each subset contains 50 thousand events

Aggregated features
For energy reconstruction, we use aggregated information from the whole array of PMTs as features for models. Their full set is
as follows:

1 AccumCharge — the accumulated charge on fired PMTs
2 nPMTs — the total number of fired PMTs
3 Coordinates of the center of charge:

(xcc, ycc, zcc) = r⃗cc =
∑NLPMTs

i=1 r⃗LPMTi ·np.e.,i +∑NSPMTs
i=1 r⃗SPMTi ·np.e.,i

∑NLPMTs
i=1 np.e.,i +∑NSPMTs

i=1 np.e.,i
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4 Coordinates of the center of FHT:
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and its radial component: Rcht = |⃗rcht|

5 γcc
x = xcc√

z2
cc+y2

cc

6 γcc
y = ycc√

x2
cc+z2

cc

7 γcc
z = zcc√

x2
cc+y2

cc

8 θcc = arctan
√

x2
cc+y2

cc
zcc

9 ϕcc = arctan ycc
xcc

10 Jcc = R2
cc · sinθcc

11 ρcc =
√

x2
cc + y2

cc

12 with 7 similar features for the components of the
center of FHT

13 Percentiles of FHT and charge distributions:
• {ht2%,ht5%,ht10%,ht15%, ...,ht90%,ht95%}
• {pe2%,pe5%,pe10%,pe15%, ...,pe90%,pe95%}

14 Differences between percentiles for FHT:
• {ht5%−2%,ht10%−5%, ...,ht95%−90%}

15 Moments for FHT and charge distributions:
• {htmean,htstd,htskew,htkurtosis}
• {pemean,pestd,peskew,pekurtosis}
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Examples of cumulative distribution functions and probability density functions for FHT (left) and charge (right) distributions. R ≃ 0
m, Edep varied. Dashes lines illustrate mean values.
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Feature selection
• Feature selection procedure is performed with a greedy algorithm using Boosted Decision Trees

• Optimized set of features (sorted by importance):

1 AccCharge
2 Rcht
3 Jcc

4 ht20%−15%
5 pestd
6 nPMTs

7 zcc
8 htstd
9 Rcc

10 ht30%−25%
11 ht5%−2%
12 pemean

13 ht15%−10%
14 ht25%−20%
15 ht35%−30%

16 ht10%−5%
17 pe50%

charge-related features time-related features
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Dashed line — average †MAPE for BDT trained on all features with its standard deviation
†MAPE = 100%

N ∑N
i=1

∣∣∣Etrue,i−Epred,i
Etrue,i

∣∣∣, where N - number of events

Models description
Fully Connected Deep Neural Network (FCDNN):
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• Optimization of the hyperparame-
ters using BayesianOptimization

• Training with early stopping

• Validation dataset: 200k events

• The optimized set of features

Boosted Decision Trees (BDT) from XGBoost:

conditions on a feature
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• The optimized set of features
• Optimized hyperparameters (using

Grid Search):
1 The maximum depth of the tree: 11
2 Number of trees in the ensemble:

≃300
3 Learning rate: 0.08

Results
Metrics:

1 Defined by a Gaussian fit of the
Epredicted −Edep distributions

2 Resolution: σ/Edep, where σ —
standard deviation of the fit

3 Bias µ/Edep, where µ —mean of
the fit

Parameterization:

σ
Edep

=

√√√√( a√
Edep

)2

+b2 +

(
c

Edep

)2

Model a±∆a b±∆b c±∆c
BDT 2.56 ± 0.11 0.67 ± 0.05 1.18 ± 0.32
FCDNN 2.35 ± 0.11 0.72 ± 0.05 1.62 ± 0.20
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Summary
Machine learning approaches
(FCDNN and BDT) using ag-
gregated features:
• energy reconstruction
• required energy resolu-

tion < 3% @ 1 MeV
achieved

• great computation speed
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Transferability of the approach: TAO
1 †Taishan Antineutrino Observatory (TAO):

• JUNO’s satellite near detector
• 30 m from Taishan core
• diameter of 1.8 meters

2 The main goals of TAO:
• reference spectrum for JUNO
• search for sterile neutrinos
• isotopic yields and spectra

3 The detector:
• the liquid scintillator detector of 2.8 tons
• ∼94% photo-coverage: 4k 5x5 cm2 SiPMs
• required energy resolution of 2%@1MeV

• Analogues datasets for training and testing
• BDT & FCDNN trained on an optimized set of features:

1 AccCharge
2 ρcc

3 ht35%

4 pe90%

5 pemean

6 nSiPMs

7 ht5%

8 Rcc

9 pestd

10 ht75%

11 pekurtosis

12 ht15%

• ∼2% at 1 MeV achieved

†more details about TAO detector in poster by C. Lombardo: JUNO-TAO design, pro-
totype and its impact for JUNO physics
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