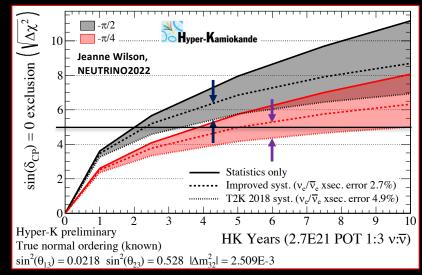


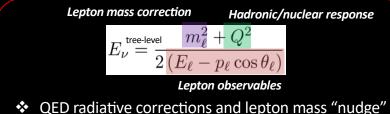

# **nuSTORM**

# Unique facility for neutrino physics and muon-collider test bed

K. Long, 23 August, 2023 ... on behalf of the nuSTORM colaboration

### **Neutrinos from stored muons**

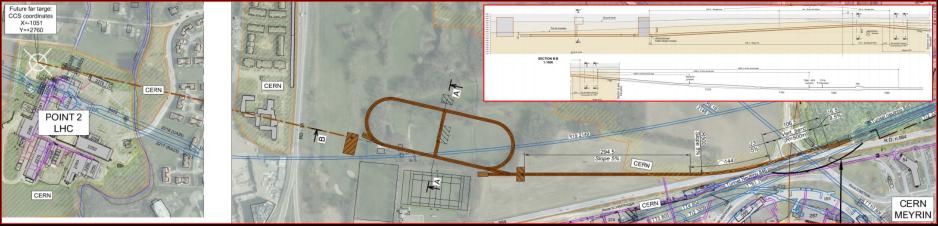




# $v_e/\overline{v}_e$ interactions for oscillations

- $\delta_{CP}$  requires  $\nu_e$  and  $\overline{\nu}_e$  appearance - Suppress  $\nu_e$  and  $\overline{\nu}_e$  background in beams
- Need  $v_e / \overline{v}_e$  interaction data
- At 1<sup>st</sup> order precision:

-  $\nu_{\mu}$ -A + lepton universality constrains  $\nu_e$ -A

- δ<sub>CP</sub> requires requires 2nd order precision!
   Large data sets & better-understood fluxes
- High-specification detector:
  - Measure lepton & hadronic final state






QED radiative corrections and lepton mass "nudge" Q<sup>2</sup>, shifting internal (q<sub>0</sub>, q<sub>3</sub>) phase space

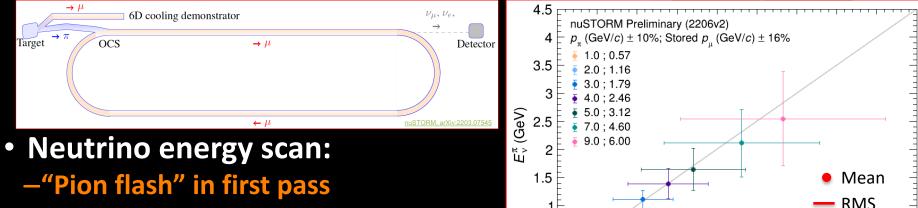
### **Overview**

#### CERN-PBC-REPORT-2019-003 DOI:10.17181/CERN.FQTB.O8QN



- Extraction from SPS through existing tunnel
- Siting of storage ring:

- Allows measurements to be made on or off axis


Preserves sterile-neutrino search option

### End-to-end simulation for (re)optimisation

- "nuSIM" under development to:
  - Simulate facility "from target to detector":
    - Pragmatic approach:
      - Fast simulation, parametric approach
      - Tracking using G4 based code; "BDSIM"

P. Kyberd et al

T. Alves, M. Pfaff



0.5

0

0.5

1.5

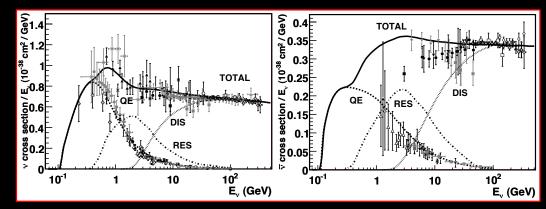
2

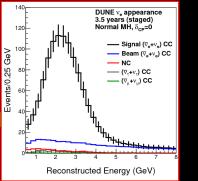
2.5

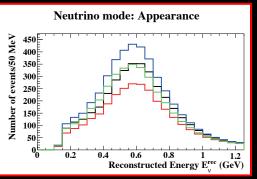
 $E_{y}^{\mu}$  (GeV)

3

3.5


4.5

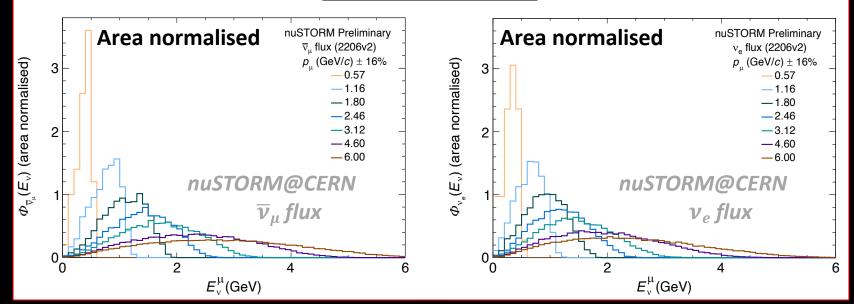

- -Subsequently neutrinos from muon decay
  - Spectrum determined by accelerator tune


# nuSTORM specification: energy range

- Guidance from:
  - Models:
    - Region of overlap 0.5—8 GeV
  - DUNE/Hyper-K far detector spectra:
    - 0.3-6 GeV
- Cross sections depend on:
  - $Q^2$  and W:
    - Assume (or specify) a detector capable of measuring exclusive fina states
    - $\rightarrow E_{\mu} < 6 \text{ GeV}$





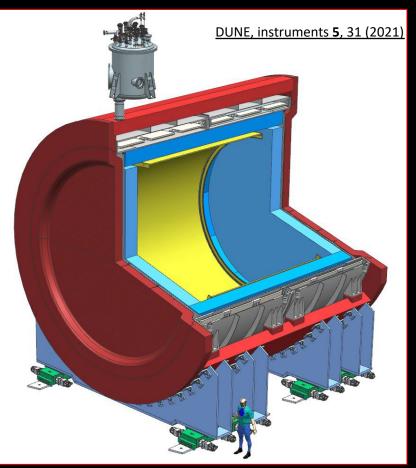




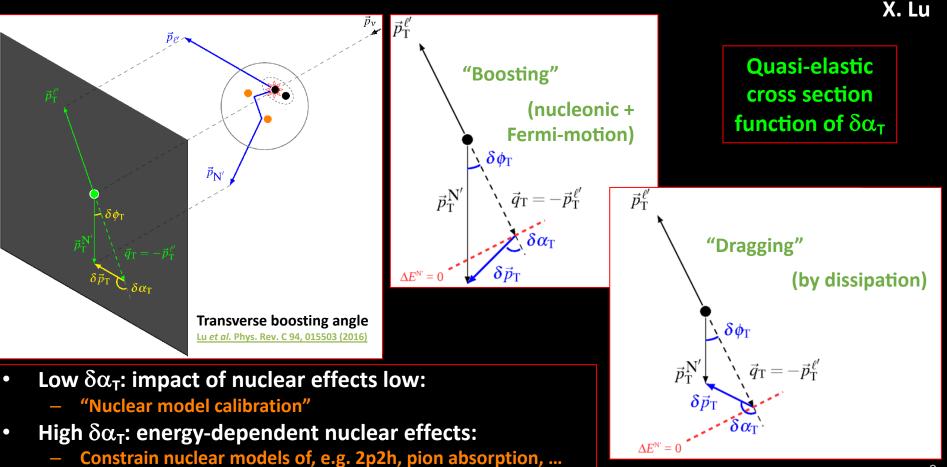



## T. Alves, M. Pfaff nuSTORM@CERN: flux estimation

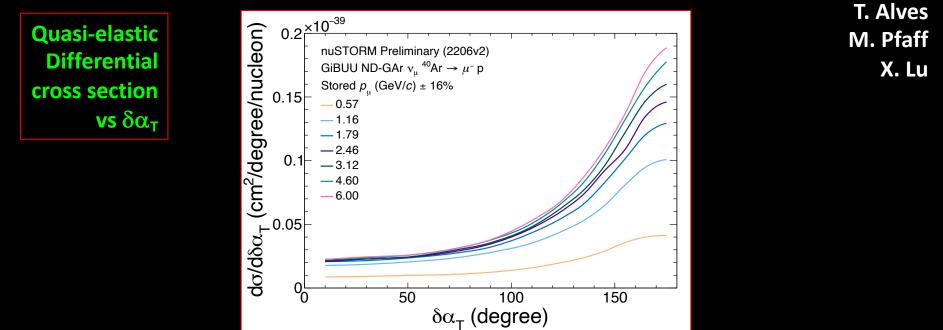
nuSTORM, arXiv:2203.07545




- Oscillation-relevant energy regime
  - Hyper-K: 0.6 GeV
  - DUNE. : 2.4 GeV
- Set by stored-muon momentum


- Unique opportunity:
  - $E_{v}$ -scan measurements
- Accelerator "tune" gives fine control
  - E.g. optimise flux shape (or spread) by adjusting the ring acceptance

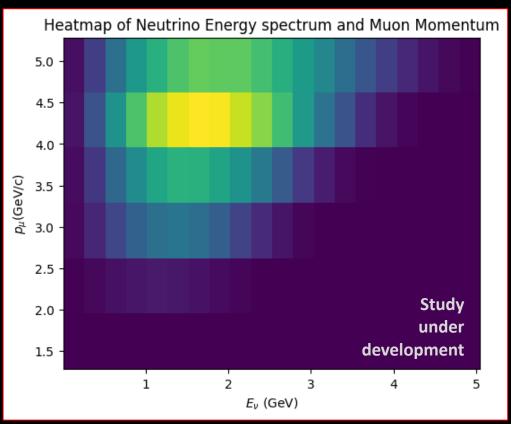
### nuSTORM@CERN: working towards a detector concept


- nuSIM ready to allow performance evaluation:
  - Require "highly capable" detector:
    - Scattered lepton
    - Inclusive and exclusive final states
- Initial study use DUNE ND-GAr:
  - TPC reference design
    - 10-bar argon-based gas TPC
    - Large gas volume
    - Surrounded by calorimeter
  - $4\pi$  acceptance, very low threshold
  - B-field provides sign selection
  - $e/\mu$  id; final state reconstruction

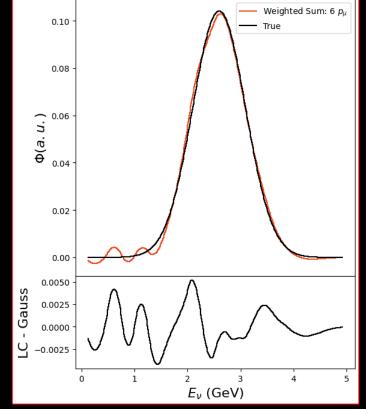


## nuSTORM@CERN: $E_{\nu}$ -scan measurements




# nuSTORM@CERN: $E_{\nu}$ -scan measurements

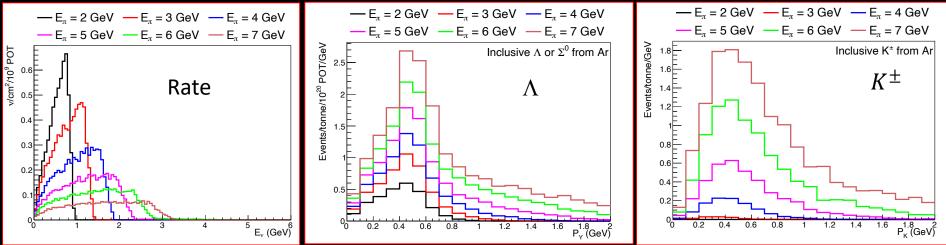



- Cross-section estimation using (preliminary) nuSTORM flux
- Energy evolution "tunable" to optimise sensitivity of measurement
- Start of study of energy dependence of various exclusive measurements:
  - To provide precise constraints on nuclear effects and their evolution

# Synthetic neutrino beam

### By combining fluxes from 6 stored-muon beam energies



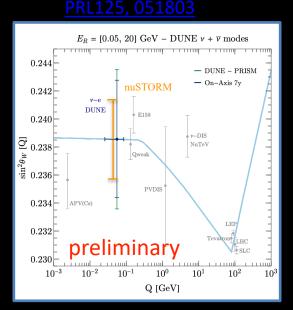

**R. Kamath** 



11

### C. Thorpe Case study: strangeness production

- Improve nuclear, final-state interaction models:
  - Presently, data is "sparse"
- Use nuSTORM flux to look at event rates:
  - NuWro used to simulate scattering
  - Assume energy threshold of 0.3 GeV, typical of LAr




#### Y.F. Perez-Gonzalez

### SM opportunities Improving Standard Model Measurements

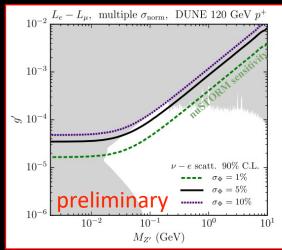
- weak mixing angle measurement at low Q-value
- SM Trident

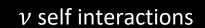
#### Trident

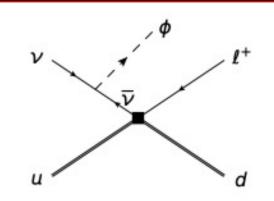


#### $\nu_{\alpha} + \text{Hadron} \rightarrow \nu_{\alpha} + \ell^{+} + \ell^{-} + \text{Hadron}$

|   | Channel                                              | SBND | $\mu \mathrm{BooNE}$ | ICARUS | DUNE ND     | $\nu$ STORM |
|---|------------------------------------------------------|------|----------------------|--------|-------------|-------------|
|   |                                                      |      |                      |        |             |             |
|   | Total $e^{\pm}\mu^{\mp}$<br>$\nu_{\mu}$ -> $\nu_{e}$ | 10   | 0.7                  | 1      | 2993 (2307) | 191         |
|   | $v_{\mu} \rightarrow v_{e}$                          | 1    | 0.1                  | 0.1    | 391 (299)   | 23          |
| i | m + 1 + -                                            |      |                      | 0.7    | 1007 (000)  | 11.4        |
|   | Total e <sup>+</sup> e <sup>-</sup><br>Coh/dif       | 6    | 0.4                  | 0.7    | 1007 (800)  | 114         |
| l | conyun                                               | 0.2  | 0.0                  | 0.02   | 64 (49)     | 6           |
| [ | Total $\mu^+\mu^-$                                   | 0.4  | 0.0                  | 0.0    | 286(210)    | 11          |
|   | Coh/dif                                              | 0.3  | 0.0                  | 0.0    | 143 (108)   | 6           |
| - |                                                      |      |                      |        |             |             |


nuSTORM POT =  $14 \times 10^{21}$ , 100t FID mass LArTPC ProtoDUNE ~700t (FID) LArTPC Y.F. Perez-Gonzalez


#### J. Turner


### **BSM opportunities** ("beyond steriles")

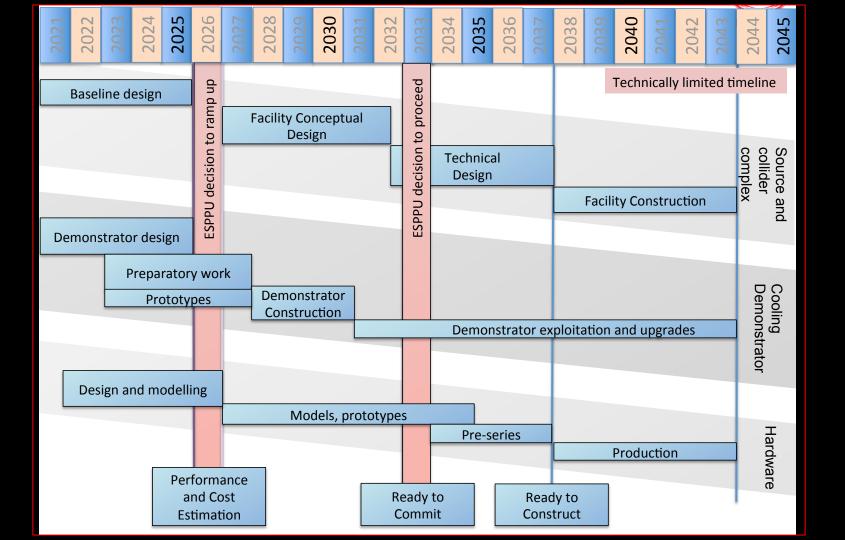
- nuSTORM sensitivity to new physics
  - New Physics (Z') can appear in trident
  - $\nu$  self interactions can be constrained (increase in expected  $\overline{\nu}$ )
  - Searches for Large Extra dimensions (oscillations occur)
  - Light Dark Matter Constraints from DM produced from  $\pi^{\pm}$  decays

#### BSM Trident PRD.100.055012








Y.F. Perez-Gonzalez

J. Turner

### **BSM opportunities** ("beyond steriles")

- nuSTORM can help resolve SBL anomalies
- Large Flux, low BGs, low systematics make nuSTORM the best place to constrain new physics

| SBL anomaly interpretations                   |                                       | Category                                                                                 | Model                       | Signature                                     | LSND                | Anomalies<br>MiniBooNE F                    | Reactors Sources                          | References                      |
|-----------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------|---------------------|---------------------------------------------|-------------------------------------------|---------------------------------|
|                                               |                                       |                                                                                          |                             |                                               |                     |                                             |                                           | Reviews and obal fits [93]      |
| 130                                           | Source                                | 3+1 Oscillations                                                                         | Anomalous<br>matter effects | Lepton flavor<br>violation                    | Decays in<br>flight | Neutrino-<br>induced<br>upscattering        | Dark-particle-<br>induced<br>upscattering | 03, 105, 106]<br>[151, 155]     |
|                                               | Reactor                               | DANSS upgrade,<br>JUNO-TAO, NEOS II,                                                     |                             |                                               |                     |                                             |                                           | 59-162,270                      |
|                                               |                                       | Neutrino-4 upgrade,<br>PROSPECT-II                                                       |                             |                                               |                     |                                             |                                           | [143, 147,<br>271–273]<br>[148] |
|                                               | Radioactive<br>Source                 | BEST-2, IsoDAR, THEIA,<br>Jinping                                                        |                             |                                               |                     |                                             |                                           | [148]                           |
| Model landscape ev                            | Atmospheric                           | IceCube upgrade, KM3NET<br>ARCA, DUNE, Hyper-H                                           |                             |                                               |                     | IceCube upgrade,<br>KM3NET, ORCA and        |                                           | 74,175,274                      |
| significantly over the                        |                                       |                                                                                          |                             |                                               |                     | ARCA, DUNE, Hyper-K,<br>THEIA               |                                           | [275]                           |
|                                               | Pion/Kaon<br>decay-at-rest            | JSNS <sup>2</sup> , COHERENT,<br>CAPTAIN-Mills, IsoDAR,<br>KPIPE                         |                             | JSNS <sup>2</sup> ,<br>COHERENT,<br>CAPTAIN-  |                     |                                             | COHERENT,<br>CAPTAIN-<br>Mills, KPIPE,    | [207]                           |
|                                               |                                       |                                                                                          |                             | Mills,<br>IsoDAR,<br>KPIPE,                   |                     |                                             | PIP2-BD                                   | [208]                           |
|                                               |                                       |                                                                                          |                             | PIP2-BD                                       |                     |                                             |                                           | [205, 206,                      |
|                                               | Beam Short<br>Baseline                | SBN                                                                                      |                             |                                               |                     | SBN                                         |                                           | 209–216]                        |
|                                               | Beam Long<br>Baseline                 | DUNE, Hyper-K, ESSnuSB                                                                   |                             | DUNE, Hyper-K, ESSnuSB, FASER $ u$ ,<br>FLArE |                     | 40, 185, 187,<br>88, 190, 193,<br>233, 276] |                                           |                                 |
|                                               | Muon decay-<br>in-flight              | νSTORM                                                                                   |                             |                                               | νSTORM              |                                             | [217]                                     |                                 |
| Matheus Hostert,<br>Community<br>Summer Study | Beta Decay<br>and Electron<br>Capture | KATRIN/TRISTAN,<br>Project-8, HUNTER,<br>BeEST, DUNE- <sup>39</sup> Ar,<br>PTOLEMY, 2νββ |                             |                                               |                     |                                             |                                           | [217]                           |



## Strategic mid-term goal

| Innovative accelerator technology underpins the physical intensity colliders <u>The technologies under considered</u> high-temperature superconductors, plasma wakefing radient accelerating structures, <u>bright muon bear</u> European particle physics community must intensify a adequate resources | European Strategy for Particle Physics<br>2020 update                                                                                                                       |                                                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
| High-priority future initiatives                                                                                                                                                                                                                                                                         | To extract the most physics from DUNE and Hyper-Kamiokande, a <mark>complementary</mark><br>programme of experimentation to determine neutrino cross-sections and fluxes is |                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             | med at determining neutrino fluxes exist worldwide. |  |  |  |
| Opportunity                                                                                                                                                                                                                                                                                              | The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied.                                 |                                                     |  |  |  |
| Exploit synergies with ENUBET:                                                                                                                                                                                                                                                                           |                                                                                                                                                                             | Other essential scientific                          |  |  |  |
| Articulate the need                                                                                                                                                                                                                                                                                      |                                                                                                                                                                             | activities for particle physics                     |  |  |  |
| Common requirement:<br>Advanced neutrino detector                                                                                                                                                                                                                                                        |                                                                                                                                                                             |                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |                                                     |  |  |  |

Final

Neutrinos from Stored Muons (nuSTORM)

Submitted to the Snowmass 2021 DPF Community Planning Exercise

#### arXiv:2203.07545

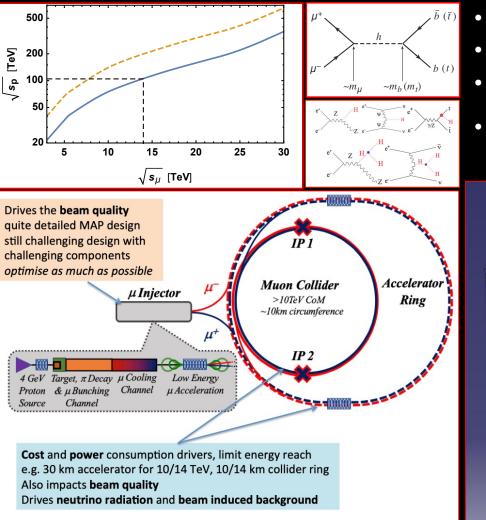
ESPPU 202x 

#### **Goal:** over next ~3 years, prepare for next ESPPU:

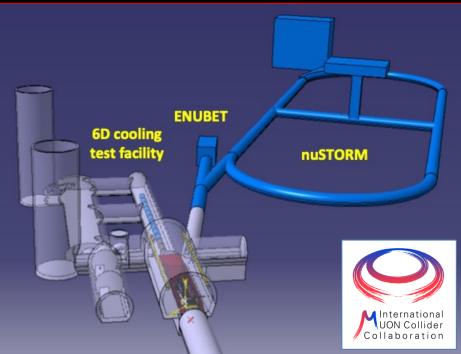
- Study and document the science case:
  - Cross sections, BSM, and MC demonstrator
- Prepare "pre-CDR" as input to the Strategy Update

#### Exploring the Physics Opportunities of nuSTORM

- Thursday 6 Apr 2023, 08:00 → 18:00 Europe/London
- loP Building, London


https://conference.ippp.dur.ac.uk/event/1169/

Description More information can be found at the main IOP website: https://iop.eventsair.com/nus2023/


Join on Zoom here: https://cern.zoom.us/j/69597357629?pwd=dCtYMXZNeTM3RTJIYVBsWVNKQmNtQT09

Recordings: part 1 MhE^W=!6, part 2 S33\$\$fP5 (auto-delete in 15 days, i.e. on ~ 21 April)

- **V** Review landscape were nuSTORM will contribute
- Seek to identify key topics and directions
- ✓ Plot a course towards follow-up workshop:
  - In around 9 to 12 months
  - Which quantifies cross section, BSM, ... opportunities
- Ideally:
  - "Proceedings" of follow-up workshop:
    - Document science case for nuSTORM in peer-reviewed publication
    - Provide evidence to support submission to ESPPU27



- Science case remains fantastic
- Technological R&D still ground-breaking
- <u>Risks</u> to programme <u>remain too</u>
- Demonstrator is critical to the programme:
  - 6D cooling <u>and</u> world-leading particle physics



### Conclusions

- nuSTORM will be a unique facility:
  - %-level *electron* and muon neutrino cross-sections
    - Neutrino energy scan; spectrum at each point precisely known
  - Exquisitely sensitive BSM & sterile neutrino searches
  - Serve as muon accelerator test bed
- Feasibility of executing nuSTORM at CERN:
  - Established through Physics Beyond Colliders study
- nuSTORM: a step towards the muon collider:
  - Proof-of-principle of high brightness stored muons beams
- 5-year goal: prepare robust case and "pre-CDR" for nuSTORM

# Thank you