

Status of the International Muon Collider Complex Study at 10 TeV

Kyriacos Skoufaris

on behalf of the International Muon Collider Collaboration (IMCC)

Motivation

Muon collider promises unique opportunity for a high-energy, precision and discovery machine in a compact form (10TeV muon collider footprint comparable to 3TeV CLIC with physics potential comparable to FCC-hh).

Introduction

- High power proton beam (short intense bunches) and low repetition rate on target.
- Target and capture channel, protons produce pions which decay into muons.
- Large energy spread μ beam split to sequence of bunches.

- Stages of muon ionisation cooling in matter.
- one bunch.
- Low energy acceleration with recirculating linacs.
- Merging of μ bunches into Acceleration to collision energy in a sequence of pulsed synchrotrons.
 - Collider packed with high field magnets to minimise circumference and maximise luminosity.

Short muon life-time —> Ionization cooling, fast acceleration, high RF gradients and high field magnets!

Introduction

Currently focus on 10 TeV, also explore 3 TeV.

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
N	1012	2.2	1.8	1.8
f _r	Hz	5	5	5
P _{beam}	MW	5.3	14.4	20
С	km	4.5	10	14
	Т	7	10.5	10.5
σ_{δ}	%	0.1	0.1	0.1
σ_{z}	mm	5	1.5	1.07
β*	mm	5	1.5	1.07
ε _L	MeV m	7.5	7.5	7.5
3	μm	25	25	25
$\sigma_{x,y}$	μm	3.0	0.9	0.63

High field in collider ring

High average magnetic field.

High constant relative energy spread.

Small bunch length and β^* that reduced with energy (proportional to 1/E).

Target integrated luminosities

\sqrt{S}	$\int \mathcal{L}dt$
3 TeV	1 ab^{-1}
$10~{ m TeV}$	$10 {\rm ab}^{-1}$
14 TeV	$20 {\rm ab}^{-1}$

Yields constant number of events in the s-channel (cross section decries with energy).

- Tentative parameters based on MAP study, might add margins.
- Achieve goal in 5 years with two detectors.

Design Baseline Overview - key challenges

Muon Production and Capture

Protons driver:

• A few MW (1 to 4MW) short proton beam with lowish repetition rate.

Front end:

Muon

- Proton beam hit the target (graphite, liquid metal jet or powder).
- p + N $\rightarrow \pi$ + X μ + Y
- Collection of muons with large energy spread and generation of 21 bunches with equal energy.
- Large bore strong solenoidal fields for maximum intensity with minimum emittance.

ITER Central Solenoid Model Coil 13 T in 1.7 m (LTS)

Muon Production and Capture

Proton complex:

- Review of linac parameters is ongoing
 - high intensity machine development (CERN PS Booster, ESS).
- Baseline lattice for accumulator-compressor based on neutrino factory lattice.
- Work ongoing on limitations to accommodate the 2MW beam at 5Hz.

Studying 2 MW target:

- Beam impact on target.
- Studies on parameter range for proton beam.
- Stress in target, shielding, vessel and window being studied.
- In general very promising.
- Studies using HTS solenoids ongoing.

Muon Cooling

Short muon lifetime —> **Ionisation cooling only option**

Absorber: reduction of longitudinal and transverse momentum.

Scattering: beam blow-up -> need for strong solenoids and low Z absorbers.

Cavities: acceleration, i.e., increase of only longitudinal momentum.

Net effect: reduction of transverse momentum and thus beam cooling.

Code development: RFTRACK integrating multiple scattering and collective effects, maintained at CERN.

Cooling

Muon Cooling - 6D cooling

RF cavities in magnetic field:

- MAP demonstrated higher than goal gradient.
- Improve design based on theoretical understanding.
- Preparation of new test stand, but needs funding
 - test stand at CEA (700 MHz, need funding)
 - test at other frequencies in the UK considered.

C. Marchand, A.
Grudiev et al. (CEA,
Milano, CERN, Tartu)

Cooling

Assessment of realistic goal for highest field solenoids:

- MAP demonstrated 30 T
- now magnets aim for 40+ T
- even more can be possible
- synergy with high-field research.

L. Bottura et al.
INFN (Task Leader), CEA,
CERN, LNCMI, PSI,
SOTON, UNIGE and
TWENTE, in collaboration
with KEK and US-MDP

Acceleration

Fast acceleration to avoid significant muon losses due to decay

- Use of high (average) RF gradients to accelerate single μ^+/μ^- bunch.
- Start with re-circulating linacs (RCL).
- Followed by rapid cycling synchrotrons (RCS)
 - acceleration within few tens of turns
 - studies based on Tesla cavities
 - hybrid RCSs have fast ramping normal conducting and constant superconducting dipoles
 - f_{RF} tuning for cavities
 - FFAs a possible alternative.

A. Chancé et al.

Acceleration

Fast-ramping magnet system:

- Expected to be one of the most important cost and power drivers.
- Magnet ramping and RF voltages require optimisation of acceleration parameters - RF voltages, synchronous phase, decay.
- Study quasi-linear ramping -> decrease peak power and magnet powering costs (natural resonant discharge of e.g. two harmonics).
- Management of the power in the resistive dipoles (tens of GW).

ment of the	e powe	er in th	e resi	stive ai	poies
	Ex	xample [·]	for RCS	3	
2 - linear harm					
-2 0	1 Injection	2	3	4 Ejection	5
2000 linear	ļ	t [r	ms]		● ●○☆
np rate		F. Batsch	n et al.		
0000 gg	1	2 t [r	3 ms]	4	5

Hybrid RCS

Circumference [m]

Survival rate [%]

Number of turns

NC dipole field [T]

SC dipole field [T]

Number of cells/arc

Path length diff. [mm]

Orbit difference [mm]

Bunch population

Survival rate per ring

Min. dipole width [mm]

Min. dipole height [mm]

Number of arcs

Cell length [m]

Acceleration time [ms]

Energy gain/turn [GeV]

NC/SC dipole length [m]

RCS3

Yes

10700

RCS4

Yes

26659

RCS1

5990

No

90

17

34

0

RCS2

5990

Yes

5.89 kJ/m

Muon Collider Ring

IMCC is currently focused on the development of a **10TeV** com energy collider ring with ~**10km** circumference generating **10ab**-1 luminosity in 5 years.

Beam characteristics:

- rms relative momentum spread $\sigma_{\delta}^{\sim}10^{-3}$.
- Twiss beta at IP and bunch length $\beta^* = \sigma_z = \epsilon_I/(\sigma_\delta E) = 1.5$ mm (5ps).
- Hour glass effect becoming significant (lumi reduction f_{hg} ~0.76).

- Small β^* at high beam rigidity enhancing chromatic effects.
- Large beta-functions at locations with superconducting magnets.
- Short bunch length to be kept for ~1000 turns.
- Radiation from muon decay products.

Muon Collider Ring - extended final focusing

Extended final focusing region:

- Final focusing quads (max βs~500km).
- Chromatic correction section for the control of the strong (non)linear chromatic aberrations.
- Matching section to connect with the arc and control of the working point.
- Muon decay products generate beam induced background at detectors and should be controlled as well as possible (nozzle see next presentation, addition of dipolar components in FF).

Control $\beta_{x,y}$, $\alpha_{x,y}$ and μ_y at the 1st half of CC

Generate -I transform at

the 1st half of CC

Generate -I transform at

at the 2nd half of CC

the 2nd half of CC

Control of working point and matching with arc

Muon Collider Ring - radiation due to muon decay

A. Lechner et al. 2.5 cm beam aperture 3 cm W shielding Power density (mW/cm³) in inner/outer coils 10 5 Tungsten 0.1 -5 -10

Due to photons and e-/e+:

- W absorber to intercept most of shower (~500 W/m for 10km).
- Residual power "leaking" into cold mass.
- Cryo load, radiation damage etc. "under control" with 30-40mm absorber.

Due to neutrinos:

- Showers generated by neutrinos close the earth surface
 - extensive use of dipoles and combined function magnets for evenly distribute the neutrino radiation
 - wobbling of machine in vertical direction (modulation within ±1 mrad reduce peak dose by factor ~100)
 - positioning such that neutrinos from IR reach earth surface in uncritical areas.
- Cross sections and energy deposition per interaction about proportional to energy.
- Strong increase of maximum dose with muon energy.

Muon Collider Ring - arc

Arc:

- Flexible Momentum Compaction arc cells.
- Keep α_p to small values (restrict bunch lengthening).
- Controls linear chromaticity.
- Copper coated (>1 μ m) on tungsten and 50(>1000)-turn damper need for 13(<20)mm radius.
- Preliminary coil aperture 158mm.
- 25MW Cryo for a 10km ring
 - feasible only with "warm" W absorber
 - use of HTS appealing
 - cooling magnets under discussion, $T_{abs} \ge 250K$ (CO₂ or water), $T_{coil} \ge 10K$ (He or H_2).

P. T. Coutinho et al.

16

Collider Ring

Summary

Muon Collider is an attractive option for a future high-energy, high-luminosity lepton collider

- IMCC aims to design a 10+ TeV com energy muon complex.
- Might be more efficient in construction and operational cost than other future machines.

Collaboration exists and is growing

• Addressing key challenges.

A number of proof-of-principle experiments and component tests have been carried

- Practical demonstration of the underlying technologies.
- Underlying technologies will be exploited in order to ensure the best possible performance.

http://muoncollider.web.cern.ch

Thank you for your time!

Most of the presented studies are work in progress.

Many of the images shown are taken from MAP, MICE and IMCC publications.

Ideas on muon colliders

Present status of ideas on muon colliders are based on several studies in the past

Project	Place	Period
g-2 experiment (measuring the anomalous magnetic moment of the muon)	CERN	1959 - 1989
"On the effects at colliding μ meson beams" (F. Tikhonin, arXiv:0805.3961)	JINR Dubna	1968
" Accelerators and colliding beams" (G. Budker, μ+/μ- storage ring c.m.e. few 100's GeV)	INP Novosibirsk	1969
European Muon Collaboration - EMC (interactions of muons up to 280GeV in NA2, NA9 and NA28 expiraments at SPS)	CERN	1973 - 1985
MC design considerations and ionization cooling of muons (A. Skrinsky and V. Parkhomchuk)	INP Novosibirsk	1981
Comprehensive theory of ionization cooling of muons (D. Neuffer)	Fermilab	1983
First US Studies on Muon Collider Complex ("Status of muon collider research and development and future plans" Phys. Rev. ST Accel. Beams 2, 081001 (1999))	USA	1990 - 1999
First European study on muon collider potential ("Prospective Study of Muon Storage Rings at CERN)	CERN	1999
Neutrino Factory and Muon Collider Collaboration - NFMCC	USA	2000 - 2010
Muon Accelerator Program - MAP	USA	2010 - 2017
Muon Ionization Cooling Experiment - MICE (demonstrate ionization cooling of muons, Nature volume 578, pages53–59 (2020))	UK	2015 - present
International Muon Collider Collaboration - IMCC (Muon collider complex with c.m.e. ~10TeV, Nature Physics volume 17, pages289–292 (2021))	Global	2021 - present
Muon collider physics case (physics case "explosion" last 3 years)	Global	1990 - present

International Muon Collider Collaboration

- The collaboration is formed to implement an R&D Roadmap for CERN Council:
 - No insurmountable obstacle found for the muon collider
 - but important need for R&D
 - develop funding scenarios.
 - Scenarios delivered by next ESPP update.
 - 50+ partner institutions (30+ already signed agreement).
- US Snowmass strong interest
 - To contribute to R&D and potentially collider in the US.
 - Now waiting for P5.
- **EU Design Study approved** this summer, 32 partners (EU+Switzerland+UK and partners), O(3+4 MEUR).
- Plan to apply in 2024 for HORIZON-INFRA-2024-TECH Goal: prepare experimental programme, e.g. demonstrator, prototypes, ...

International Muon Collider Collaboration

IEIO	CERN
FR	CEA-IRFU
	CNRS-LNCMI
DE	DESY
	Technical University of Darmstadt
	University of Rostock
	KIT
IT	INFN
	INFN, Univ., Polit. Torino
	INFN, Univ. Milano
	INFN, Univ. Padova
	INFN, Univ. Pavia
	INFN, Univ. Bologna
	INFN Trieste
	INFN, Univ. Bari
	INFN, Univ. Roma 1
	ENEA
SE	ESS
	University of Uppsala
PT	LIP
NL	University of Twente
US	Iowa State University
	Wisconsin-Madison
	Pittsburg University
	BNL

RAL
UK Research and Innovation
University of Lancaster
University of Southampton
University of Strathclyde
University of Sussex
Imperial College
Royal Holloway
University of Huddersfield
University of Oxford
University of Warwick
University of Durham
Tartu University
Riga Technical Univers
HEPHY
TU Wien
I3M
PSI
University of Geneva
EPFL
Louvain
Tampere University
Sun Yat-sen University
IHEP
Peking University

IT	INFN Frascati
	INFN, Univ. Ferrara
	INFN, Univ. Roma 3
	INFN Legnaro
	INFN, Univ. Milano Bicocca
	INFN Genova
	INFN Laboratori del Sud
	INFN Napoli
US	FNAL
	LBL
	JLAB
	Chicago
Japan	Akira Yamamoto
	Akira Sato
	Toru Ogitsu